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Summary  

The European Marine Strategy Framework Directive (MSFD) requires Member States (MS) to achieve Good 

Environmental Status (GES) of their seas by 2020.  Monitoring and assessment should be performed in a 

coherent, coordinated and consistent manner. The North East Atlantic MSFD Region is divided into four 

sub-regions: the Wider Atlantic, the Bay of Biscay and Iberian Coast, the Celtic Seas and the Greater North 

Sea. Each MS is required to develop a marine strategy for their Exclusive Economic Zone (EEZ). Therefore, it 

is important that MS work together to implement each stage of the Directive in a coherent and 

coordinated way, ensuring comparability across Europe. The OSPAR Convention is a key forum to facilitate 

many aspects of the coordination process.  

The present report is a deliverable of the EU funded project “Joint monitoring programme of the 

eutrophication of the North Sea with satellite data’  (JMP EUNOSAT). This project aims to develop a 

coherent monitoring and assessment framework for chlorophyll a (CHL), an indicator relevant for 

eutrophication (D5) and foodwebs (D4), for the North Sea. The project is organised in 3 activities with the 

following aims: 

 

a) Derivation of threshold values for Good Environmental Status (GES) for nutrients and algae 
concentrations with a common a common method for all North Sea countries (activity 1);  

b) Generation and validation of a coherent multi-algorithm satellite-based chlorophyll-a product for 

the North Sea and the suitability of these products for eutrophication assessments (activity 2)  
c) Definition of coherent assessment areas with similar ecological and physical functioning (activities 1 

and 2 together) 
d) Development of a potential design of a future monitoring and assessment programme (activity 3)  

 

The present report describes the results of Activity 2 of the project comprising generation of a coherent 

satellite-based chlorophyll-a product, examples of eutrophication assessments using the satellite products 

and an evaluation of the suitability of satellite observations for this purpose.  

First, we evaluate publicly accessible satellite-based chlorophyll a products available from Copernicus 

Marine Environment Monitoring Services (CMEMS), European Space Agency (i.e. ODESA) and other data 

providers (i.e. IFREMER) generated using 1) blue/green-ratio algorithms, 2) red-edge algorithms and 3) 

artificial network approaches and determine their validity for different water types,  giving special attention 

to optically complex coastal waters. From these products we choose the most suitable products and 

provide information on the steps needed to upgrade these core ocean color satellite products to 

operational and coherent monitoring products usable for eutrophication assessment in the Greater North 

Sea.  

 

We present a quality control procedure for four complementary chlorophyll -a algorithms: the classic 

empirical blue-green bands ratio algorithm (OC4) and the adapted OC4 for Baltic waters, the OC5 algorithm 

and finally the Gons (1999) semi-analytic algorithm. Results that do not pass this test are removed 

(flagged). This quality flagging approach is calibrated and validated using well known ocean color match-up 

data bases (i.e. CCRR, MERMAID). Subsequently, the best combination of chlorophyll a algorithms is 
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discussed to produce a quality controlled multi -algorithm satellite chlorophyll a product based on the best 

suited algorithm/water type combination.  

 

This step enabled the progression from point-by-point and country-by-country analyses, to basin-wide 

analysis with data that cover gradients in the ecosystem system. This approach is applied to available 

satellite data for the period 1998-2017 and the suitability of the blended CHL product for eutrophication 

assessment is evaluated by a comparison analysis with in-situ datasets for all assessment areas in the 

Greater North Sea. A validation of the yearly mean and P90 chlorophyll a products using the national 

monitoring chlorophyll a data obtained using different analytical techniques (i.e. HPLC, spectrophotometry, 

fluorometry) yielded a median error of 35.19% and 39.05% respectively. This shows a good general 

agreement between in-situ and satellite observations. 

 

Considering the spatial and temporal availability of the quality-controlled multi-algorithm chlorophyll a 

products for the period 1998-2017 we can conclude that remote sensing provides opportunities for a 

synoptic overview of the chlorophyll a concentrations of most part of the North Sea. Gathering similar 

synoptic observations with in-situ observations is difficult or even impossible, especially in off -shore areas. 

However, there are circumstances where the multi-algorithm remote sensing observations are unsuitable 

for CHL assessments and where in-situ observations are required to obtain relevant information. There is a 

significant advantage with the availability of the MERIS sensor (2003-2011) in terms of providing 

specialized products for optically complex waters which is continued with the Sentinel-3 satellite program. 

Outside of the MERIS period (1998-2002 and 2012-2016) we observed critically low valid CHL observations 

in estuaries, the East Anglia Plume, the Wadden Sea, near-shore coastal zones (e.g. UK, BE, NL, GE, DK) and 

fjords.  

 

With the Copernicus program guaranteeing a reliable source of data to at least 2036, special efforts were 

made to ensure future integration of Sentinel-3/OLCI data into the processing chain. Sentinel-3/OLCI has a 

similar spectral band set as MERIS enabling more reliable products for optically complex waters. The full 

resolution data (300m spatial resolution) are expected to provide more robust CHL estimates in the 

problematic regions discussed above. Additionally, the Sentinel-2/MSI satellite which is originally designed 

for land applications can provide chlorophyll a products with a spatial resolution of 10m—20m. While 

these applications are not directly investigated in this study, this option provides useful perspectives for 

eutrophication monitoring of the near shore coastal waters.  

To take the next step towards integration of satellite observations into eutrophication assessments for the 

North Sea, we investigated: 1) different approaches of aggregating the satellite chlorophyll a products, 2) 

use of different assessment levels and 3) use of new assessment areas.  

In a case study focussing on the Dutch part of the North Sea we tested the impact of the different 

approaches on eutrophication assessment to improve/fine-tune all components before actual 

implementation. When considering all satellite CHL observations at full resolution, the estimated area 

chlorophyll a mean is for most areas reasonably close to the mean based on in-situ data only when the 

areas are relatively homogeneous with respect to water quality characteristics. However, in areas with 
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strong spatial gradients, the assessment results are very sensitive to the area boundaries and the choice of 

in-situ monitoring locations. A solution was proposed by spatially variable chlorophyll a assessment levels 

with a spatial resolution of 1x1km corresponding to the grid used for the satellite data. This enables a pixel 

by pixel eutrophication assessment by directly comparing the satellite data with the assessment levels 

resulting in a more consistent relative exceedance of the assessment levels throughout the assessment 

area. Consequently, the result is less dependent on the definition of assessment areas.  Another possibility 

is to re-organize the assessment areas into zones that share similar environmental  conditions (Final report 

Activity 1 section 9) which is presented in a case study (section 3).  

During the study it was also found that the MSFD system using only two classes (good and bad) is quite 

limiting in terms of assessing gradual improvement of the status of an assessment area relative to the 

threshold indicating good environmental status. Using more classes, such as in the WFD, would give more 

information on changes. Regarding the extent to which good environmental status has been achiev ed in an 

assessment area, the satellite-based eutrophication product can easily determine the extent of the area 

that is not subject to eutrophication, using fixed or variable thresholds, and determine its evolution in time 

as an objective measure of changes in eutrophication status. 
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1. Introduction 

The Marine Strategy Framework Directive (MSFD) is currently one of the most important drivers for 

monitoring the coastal and offshore waters in Europe with the objective of reaching a ‘good environmental 

status’ (GES) by 2020 (Gohin et al. 2008). It is a crucial legal instrument of the European Commission to 

protect the marine environment including its ecosystems and biodiversity. Human-induced eutrophication 

is one of the criteria for assessing the extent to which GES is being achieved. Eutrophication can be defined 

as the enrichment of water by nutrients causing an accelerated growth of algae and higher forms of plant 

life to produce an undesirable disturbance to the balance of organisms present in the water and to the 

quality of the water concerned, and therefore refers to the undesirable effects resulting from 

anthropogenic enrichment by nutrients (OSPAR, 2017). 

The eutrophication status is established by monitoring of nutrients, and chlorophyll-a (CHL )concentration 

as a proxy of phytoplankton biomass. More specifically, the indicator of choice is the mean or 90-percentile 

of the CHL concentrations (avg, CHL-P90) over the phytoplankton growing season (e.g. March – September 

incl.) for a period of six years expressed in µg/l or mg/m³. CHL-P90 represents the CHL level such that 90% 

of the observations are equal to or less than this value. While in-situ data acquisition is still considered as 

the main monitoring tool, the European Commission highlighted the need for greater coherence with 

related EU legislations (Water Framework Directive and Habitats and Birds Directive) and for more 

coherent and coordinated approaches within and between marine regions and sub -regions (European 

Commission, 2014).While preparing for the second cycle of MSFD assessment, various OSPAR groups 

(Intersessional Correspondence Group on Eutrophication (ICG-EUT) and the Hazardous Substances and 

Eutrophication Committee (HASEC) have identified incomparability of monitoring methods for CHL as a 

main issue hampering a coherent assessment of the common indicator CHL in the Greater North Sea. 

Moreover, the assessment levels for CHL, based on background concentrations, have been determined 

with different methods between member states. This results in different GES determinations across 

national borders that cannot be explained by differences in water quality (Figure 1.1). Additionally, the 

budgets for marine monitoring are decreasing in many European countries and MSFD requires countries to 

measure more variables forcing them to efficiently use monitoring resources. 

During recent years there has been a growing tendency to use optical remote sensing as a supporting tool 

to achieve the monitoring requirements because of severe resource constraints of available ship time and 

personnel and the need for a coherent assessment of CHL between all OSPAR member statescountries 

bordering the North Sea. Incoherence in assessment outcomes is most prominent in the North Sea, since 

the area is divided in national territories of eight countries. Satellite data of CHL combine cheaper data 

collection with a much improved geographical and temporal coverage compared to traditional in-situ data 
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Figure 1.1: Map of problem areas for eutrophication in the OSPAR region (OSPAR, 2017) 

Satellite data from ocean color sensors (i.e. SeaWiFS, MODIS, MERIS, VIIRS, Sentinel -3) can provide 

spatially coherent data on CHL concentrations using CHL retrieval algorithms. There has been considerable 

success with blue/green-ratio algorithms such as OC4 (O’Reilly et al., 1998) and OC5 (Gohin et al. 2002) in 

case 1 waters where the variation of optical properties (absorption and scattering) is dominated by 

phytoplankton and associated material. In contrast, the optical complexity in coastal waters often poses 

many challenges to the accurate retrieval of biogeochemical parameters using satellite remote sensing 

(Sathyendranath, 2000; Lee, 2006). CHL retrieval by blue/green-ratio algorithms tend to fail when applied 

to coastal waters whose optical properties are strongly influenced by non-covarying concentrations of 

suspended particulate matter (SPM) and coloured dissolved organic matter (CDOM). Such waters are 

defined as case 2 waters. Several constituent retrieval algorithms for use in case 2 waters have been 

developed: 1) red-edge algorithms (Gons et al., 2002) taking advantage of the CHL absorption peak near 

670 nm and 2) artificial network approaches trained to varying parameter concentrations and optical 

property ranges specifically developed for use with MERIS data, such as the MERIS Ground Segment 

Processor -MEGS- (Doerffer and Schiller, 2007) and the FUB/WeW (Schroeder et al., 2007).  

The technical objective of the Activity 2 of the JMP EUNOSAT project is to generate a coherent multi-

algorithm satellite-based CHL product from publicly accessible satellite-based CHL products available from 

CMEMS, ODESA and IFREMER. To achieve this, we determine the validity of these core ocean color 

products for different water types (e.g. clear, turbid or CDOM-rich waters) and upgrade these satellite 

products to operational and coherent monitoring products usable for eutrophication assessment in the 
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Greater North Sea through a quality control and merging process. This step enabled the progression from 

point-by-point and country-by-country analyses, to basin-wide analysis with data that cover gradients in 

the ecosystem system. 

The following sub-activities have been performed: 

1) Generation of coherent multi-algorithm satellite-based chlorophyll a products consisting of a 

quality flagging approach and merging procedure (chapter 2.3) which was applied to a satellite data 

archive (chapter 2.2) for the period 1998-2017 (chapter 2.4) 

2) Validation of coherent satellite-based chlorophyll a product (chapter 2.5) 

3) Evaluation of coherent satellite-based chlorophyll a product for eutrophication assessment in a 

case study for Dutch waters (chapter 3) 

4) Evaluation of suitability of satellite data for coherent eutrophication assessment in the North Sea 

(chapter 4) 
 

2. Generation of coherent satellite-based chlorophyll a product 

Part of this section is in preparation for submission to a scientific Journal: 

Lavigne, H., Van der Zande, D., Ruddick, K., Cardoso Dos santos, J. Chlorophyll-a algorithm selection in coastal 

waters. Definition of application flags for OC4, OC5 and Gons algorithms. In prep.  

2.1. Introduction 

In this section we provide information on the steps needed to upgrade core ocean color satellite products, 

as delivered by CMEMS, ODESA and IFREMER, to operational and coherent monitoring products usable for 

eutrophication assessment in the Greater North Sea giving special attention to optically complex coastal 

waters. Optically complex coastal waters pose many challenges for satellite remote sensing to accurately 

retrieve biogeochemical parameters such as CHL concentration due to concentrations of suspended 

particulate matter (SPM) and colored dissolved organic matter (CDOM). Here we evaluate publicly 

accessible satellite-based CHL products available from Copernicus Marine Environment Monitoring 

Services (CMEMS), European Space Agency (i.e. ODESA) and other data providers (i.e. IFREMER) generated 

using 1) blue/green-ratio algorithms, 2) red-edge algorithms and 3) artificial network approaches and 

determine their validity for different water types, e.g. clear, turbid or CDOM-rich waters. The results of this 

evaluation are subsequently used to determine the reflectance (i.e. RRS) conditions for which these 

algorithms can deliver an accurate CHL estimate in complex optical conditions as found in coastal waters. 

Finally, the best combination of CHL algorithms is discussed to produce a quality controlled multi-algorithm 

satellite CHL product based on best suited algorithm/water type combination (Figure 2.1). This step 

enabled the progression from point-by-point and country-by-country analyses, to basin-wide analysis with 

data that cover gradients in the ecosystem system. The suitability of the blended CHL product for 

eutrophication assessment is evaluated by a comparison analysis with in-situ datasets for all assessment 

areas in the Greater North Sea.  
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Figure 2.1: Overview of steps needed to generate a quality controlled multi-algorithm coherent satellite CHL product using 

data from multiple ocean color sensors. 

The workflow of this section is: 

 Acquisition of core ocean color satellite products from main product services such as CMEMS and 

ODESA 

 Development of quality control protocol for CHL products to generate coherent multi-algorithm 

satellite CHL product based on best suited algorithm/water type combination 

 Validation of coherent multi-algorithm satellite product 

 

2.2. Acquisition of core ocean color satellite products 

We started from a collection of operational satellite-based CHL products for the Greater North Sea (Table 

2.1) : 1) CMEMS OC5-CI (product 2.1), 2) CMEMS OC4 adapted to Baltic waters (product 2.4 & 2.5), 4) OC4 

applied to CMEMS remote sensing reflectance products (product 2.2 & 2.3), 5) MEGS 7.5 applied to the 

MERIS archive obtained from ODESA online (http://www.odesa-info.eu/, product 2.8), the red-edge 

algorithm (Gons et al. 2002, product 2.9) applied to remote sensing reflectance spectra (RRS) obtained by 

applying MEGS 8.1 to the MERIS archive obtained from ODESA online and the FUB-WEW neural network 

(v4.0.1, product 2.10) applied to MERIS L1b data. An overview of the products and links to their product 

user manual and quality information document is provided in table 2.1.  

 

http://www.odesa-info.eu/
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Table 2.1: Overview of satellite products and links to their Product User Manual (PUM) and Quality Information Document 

(QUID). 

Ref. No. Product name & type Documentation 

2.1 OCEANCOLOUR_ATL_CHL_L3_REP_OB

SERVATIONS_009_067 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-066-067-068-069-088-091.pdf 

2.2 OCEANCOLOUR_ATL_OPTICS_L3_REP

_OBSERVATIONS_009_066 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-066-067-068-069-088-091.pdf 

2.3 OCEANCOLOUR_ATL_OPTICS_L3_NRT

_OBSERVATIONS_009_034 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-034-036-046-047-087-089-090-092.pdf 

2.4           

OCEANCOLOUR_BAL_CHL_L3_REP_O

BSERVATIONS_009_080                              

  

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-080-097.pdf 

2.5 OCEANCOLOUR_BAL_CHL_L3_NRT_O

BSERVATIONS_009_049 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-048-049.pdf 

2.6 OCEANCOLOUR_BAL_OPTICS_L3_NRT

_OBSERVATIONS_009_048 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-048-049.pdf 

2.7 OCEANCOLOUR_BAL_OPTICS_L3_REP

_OBSERVATIONS_009_097 

PUM: 

http://marine.copernicus.eu/documents/PUM/CMEMS-OC-

PUM-009-ALL.pdf 

QUID: 

http://marine.copernicus.eu/documents/QUID/CMEMS-OC-

QUID-009-080-097.pdf 
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2.8 OCEANCOLOUR_MERIS_MEGS75 

OCEANCOLOUR_MERIS_MEGS81 

PUM: 

https://earth.esa.int/web/sentinel/user-guides/software-tools/-

/article/odesa  

QUID: 

http://mermaid.acri.fr/home/home.php 

2.9 OCEANCOLOUR_MERIS_GONS Gons et al. (2002) 

2.10 OCEANCOLOUR_MERIS_FUBv4.0.1 Schroeder et al. (2007) 

 

CMEMS products (product 2.1 to 2.7) were directly downloaded from the CMEMS FTP server and are 

delivered as Analysis Ready Data (ARD) without additional quality flags.  

MERIS products (products 2.9) were obtained from the ODESA processor. CHL products were generated 

using the MEGS7.5 and RRS products using the MEGS8.1 processor. The MEGS7.5 processor produces two 

CHL products, algal1 and algal2. Algal1 is designed for case 1 waters and is derived using a maximum band -

ratio algorithm which uses four wavelengths: 443, 490, 510 and 560 nm (Morel and Antoine, 2007, Morel 

et al., 2007), while algal2 is computed using a neural-network inversion algorithm designed for case 2 

waters (Doerffer and Schiller, 2007), which uses the eight MERIS visible wavelengths: 412–709 nm, except 

681 nm to avoid chlorophyll fluorescence effects. It is noted that the MERIS case 2 water (algal2) algorithm 

is substantially different in design and wavelengths from the MERIS case 1 water (algal1) algorithm. A 

quality control is performed on RRS, algal1 and algal2 products by removing less reliable data using the 

standard level 2 flags provided by the MEGS processor (Table 2.2). The choice of which of the two MERIS 

CHL products to use is made according to the turbid case 2 water flag (case2_s) which produces a single 

MERIS daily CHL product for further processing. The MEGS7.5 chlorophyll product for turbid waters 

(algal_2) was updated with the third reprocessing (MEGS8.1) of the MERIS data. Unfortunately, the new 

version of algal_2 is correlated with the signal from suspended matter resulting in the retrieval of 

unnatural spatial and temporal patterns of chlorophyll concentration in turbid waters (corresponding to 

suspended matter variability) making the algal_2 dataset from MEGS 8.1 is not usable in turbid waters 

(Vanhellemont, 2012) 
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Table 2.2: Overview MERIS quality flags used to remove less reliable data from the RRS and CHL products 

Flag Name Description 

land Pixel classifed as Land in L1B, adjusted radiometrically during L2 pixel 
classification to allow for geocorrection errors and tidal changes. 

cloud Pixel classified as cloud by the L2 cloud screening algorithm. 

Sub-pixel, scattered cloud not included. 

low_sun Sun Zenith Angle > 70° 

high_glint Pixel with high sun-glint, which has NOT been corrected. Sunglint reflectance  

calculated from viewing geometry and wind speed exceeds the medium glint  
threshold, and is too high for glint correction ice_haze Pixel with high radiance in the blue, likely to be caused by ice or high aerosol 

load 

case2_anom Bright water pixel, anomalous scattering water. Flags the presence of Case 2  
water 

coastline Coastline flag 

pcd_1_13 Confidence flag for MDS 1 to 13 (reflectances). Raised at low sun angles, when  
atmospheric correction fails or there are difficulties with aerosol correction. Also 

for pixels with whitecaps or uncorrected glint, when reflectances in any band  

are negative, or when reflectance at 510nm exceeds a threshold without the  
CASE2_S flag having been raised. 

pcd_15 Confidence flag for MDS 15 (algal_1). Raised when atmospheric correction  

fails or there are difficulties with aerosol correction. Also for pixels with  

uncorrected glint or whitecaps, and for pixels with high turbidity. (See  

ABSOA_*, CASE2_*, HIGH_GLINT flags.) 

pcd_17 Confidence flag for MDS 17 (algal_2) Raised when PCD_13 is raised, or when  

the algorithm input or output is outside the expected range.  

case2_s Turbid water, nominally TSM > 0.3gm-3. Indicative of sediment laden coastal 

water or coccolithophore blooms, sometimes other algal blooms. Raised after 
correction for atmospheric Rayleigh scattering and checks for glint and 

whitecaps, when near infrared (NIR) radiances arehigh. ATBD_2_05.  
invalid_algal_1 Invalid algal 1 product 

invalid_algal2_tsm_ys Invalid algal 2, TSM and Yellow matter products 

 
The FUB neural network (v4.0.1) was applied to the MERIS Level -1b data archive using the SNAPv6.0 

software providing Level-2 CHL products. During the processing the MERIS Level-1b data are masked prior 

to the retrieval by applying the following combination mask: GLINT_RISK | LAND_OCEAN | BRIGHT | 

COASTLINE | INVALID. Subsequently, each pixel is checked against the input and output values margin of 

the trained networks. Additional flags are set in case  of a neural network failure for input and output 

separately. These Level 2 FUB/WeW processor flags of input (in) or output (out) retrieval failure of 

chlorophyll-a (chl), yellow substance (yel), total suspended matter(tsm) and atmospheric correction (atm)  

are “chl_in”, “chl_out”, “yel_in”, “yel_out”, “tsm_in”, “tsm_out”, “atm_in” and “atm_out”.  

 

Figure 2.2 shows a CHL product matrix providing an overview of ESA and NASA’s ocean color satellites and 

the CHL products as described above. Based on literature,  an initial selection of the optimal CHL product 

for a certain appropriate water type (turbid, clear or absorbing waters) is made. There are two 

considerations to be made here: 1) not all CHL algorithms provide accurate CHL products in all waters (e.g. 

blue green algorithms fail in turbid waters for lower CHL values as the signal is masked by high scattering 

effects) and 2) not all algorithms can be applied to all satellites, e.g. the neural networks or red -NIR 

algorithm cannot be applied to data from NASA’s sensors as those sensors have no 709nm spectral band. 

This results in a data gap for turbid waters during the periods when no ESA satellites were available. We 

aim to fill in these data gaps with quality-controlled satellite data using NASA satellites and their algorithms 

as much as possible. CHL product matrix providing an overview of ESA and NASA’s ocean colour satellites 

and different CHL products. For turbid coastal waters, there are data gaps for non -MERIS periods as the 

neural net or GONS CHL products are not available for NASA’s sensors due to the missing of the 709nm 

band.   
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Figure 2.2: CHL product matrix providing an overview of ESA and NASA’s ocean colour satellites and different CHL products. 

Based on literature, the optimal CHL product is linked to its appropriate water type (turbid, clear or absorbing waters). For 

turbid coastal waters, there are data gaps for non-MERIS periods as the neural net or GONS CHL products are not available for 

NASA’s sensors due to the missing of the 709nm band. 

All data where re-gridded to a regular Equirectangular projection in which longitude and latitude steps are 
constant resulting in a pixel size of 1km. The square region of interest was set to a longitude of 8°W to 13°E 

and latitude of 48°N to 65°N. The region of interest is shown in figure 2.3 illustrating product 2.1 for April 
2010. 

 
Figure 2.3: CHL (mean) map for April 2010 based on the product 2.1 (table2.2) demonstrating the JMP-EUNOSAT region of 

interest. 
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2.3.  Quality control protocol for satellite CHL products 

We propose to define simple application rules for four complementary  CHL algorithms: the classic 

empirical blue-green bands ratio algorithm (OC4, O’Reilly et al., 1998) and the adapted OC4 for Baltic 

waters (Pitarch et al., 2016), the OC5 algorithm (Gohin et al., 2002) and finally the Gons (1999) semi-

analytic algorithm. OC4 algorithm is an empirical blue-green band ratio algorithm with a blue band shift 

from 443 to 510 when CHL concentration increases. This algorithm is adapted to case 1 waters and its 

median error was estimated to be around 30% for deep waters at global scale (Bailey and  Werdell, 2006). 

Although, OC4 is generally not adapted to coastal waters, it might be suitable for certain coastal zones with 

optical water properties close the open ocean. The OC5 algorithm is an empirical algorithm based on Look 

up Tables (LUTs), it has been designed to correct overestimation effects of typical OC4 algorithm in 

moderately turbid waters or CDOM contaminated waters with a training dataset located i n the Bay of 

Biscay and the English Channel. OC5 LUTs are based on a triplet of entries:  CHL estimation with the OC4 

algorithm and normalized water leaving radiances at 412 and 560nm. OC5 LUTs have been originally 

developed for the SeaWiFS sensors (Gohin et al., 2002) but additional LUTs adapted to other 

ocean colour sensors (MODIS AQUA, MERIS and OLCI) are available (Francis Gohin pers. 

com.). The Gons (1999) algorithm is based on the NIR-red band ratio (i.e. reflectance bands 705nm and 

665nm) which is increasing with CHL content. These types of algorithms are only valid in eutrophic waters 

where the NIR-red signal is significant enough to not being masked by radiometric noise. Among the 

variety of NIR-red band ratios algorithms (Moses et al., 2009; Dall-Olmo and Gitelson, 2005; Gitelson et al., 

2007; Le et al., 2009), we selected the Gons (1999) version because it is semi-analytical which makes it less 

dependent to validation datasets that the empirical algorithms. 

   

Previously, Lee et al. (2006) and Park and Ruddick (2010) proposed simple calculations based on 

reflectance to identify case 1 waters where OC4 algorithm is expected to apply. Lee et al, (2006) 

calculations are based on the average relationship, observed at global scale, between  CHL concentration 

and particulate suspended matter (SPM hereafter) and between CHL and CDOM which allows to 

distinguish case 1 from case 2 waters. With another approach, Park et al. (2010) provided a quality control 

flag for the utilization of MODIS CHL estimations derived from the OC4 algorithm, in turbid waters. To 

process simultaneously oligotrophic and eutrophic waters, switching algorithms using blue -green and NIR-

red bands ratio algorithms have also been proposed (Gons et al., 2008; Smith et al., 2018) for specific 

regions and water type (i.e. case 1 waters in Smith et al., 2018). However,  all these approaches are 

dependent of a specific region or water properties or are not based on the performances of  CHL algorithms 

(Lee et al., 2006). To our knowledge, there do not exist any simple calculations based on water leaving 

reflectance to limit the application of main CHL algorithms in any complex waters. This section is 

attempting to fill this gap by providing conditions of application for OC4, OC4BAL, OC5 

and Gons (1999) algorithms based on water leaving reflectance.   

An in situ/satellite matchups dataset was produced using MEdium Resolution Imaging Spectrometer 

(MERIS; Rast et al., 1999) reflectances. MERIS was operational from March 2002 to May 2012 which allows 

the production of a consequent matchups dataset. In addition, its spectral characteristics are very close to 

the Ocean and Land Colour Instrument (OLCI, Nieke et al., 2012) onboard Sentinel 3 A and B launched in 

February 2016 and in April 2018 respectively. Then, results presented here aim to be applied on OLCI data. 
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After the presentation of the data used, the methodology to determinate reflectance conditions for which 

OC4, OC4Bal, OC5 and GONS algorithms should be applied is presented. Results present the perf ormances 

of the algorithms before and after quality control as well as the conditions of application themselves. 

Finally, the best combination of OC4, OC5 and Gons (1999) algorithms is discussed to produce multi -

algorithms satellite CHL products and examples of applications on MERIS and OLCI are presented.      
 

No additional quality controls were performed on the MEGS7.5 and FUB CHL products as these neural 

networks already provide quality flags which were applied.  

2.3.1. In situ data for algorithm investigation (Match-up data) 

A total of 235 situ CHL and MERIS matchups were extracted from the MERMAID database 

(http://mermaid.acri.fr/home/home.php) from the MEGS 8.1 processing at reduced resolution (RR). In s itu 

CHL was mostly determined with HPLC technique (95%) otherwise with spectrophotometry (5%). The CHL 

in situ database was completed with measurements published in the Coast Colour Round Robin (CCRR) 

dataset (Nechad et al., 2015). CCRR database gather in situ optical and biogeochemical data from different 

coastal regions over the world. All in situ CHL data were extracted and MERIS matchups were extracted 

from Reduced resolution MEGS8.0 level 2 products downloaded on ODESA platform ( http://www.odesa-

info.eu/info/). In the CCRR dataset, CHL estimations were derived from fluorometry technique (57%) and 

HPLC (43%). For the MERMAID and CCRR datasets, MERIS matchups were acquired within a time window 

of +/- 2.5 hours and resulting values were computed as the median of 9 pixels around the location of the 

in-situ measurements. Data was accepted if at least 3 valid pixels were available. Then, a final quality 

control was applied on data to remove data points with negative reflectance values at 443nm. The final 

dataset included 348 CHL/MERIS matchups from July 2002 to July 2011 with a global spatial distribution 

with a higher density in the North Sea (Figure 2.4). 235 points came from the MERMAID dataset and 113 

points from the CCRR dataset. In the whole dataset, in situ CHL measurements range from 0.05 mg m -3 to 

31 mg m-3.  

Figure 2.4: Spatial distribution of the in situ CHL observations with a MERIS matchup in the CCRR-MERMAID dataset 

http://mermaid.acri.fr/home/home.php
http://www.odesa-info.eu/info/
http://www.odesa-info.eu/info/
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From MERIS reflectances, CHL estimations were computed from MERIS dedicated algorithms. The OC4 blue 

green band ratio algorithm was computed with factors given by Morel and Antoine (2011). The MERIS 

adaptation proposed by Gons et al. (2002) was used for the NIR-red band ratio algorithm from Gons (1999) 

and specific MERIS LUTs were used to compute OC5 CHL (Gohin et al., 2002; Gohin  and Stanev, 2011). 

Algorithms are described in the Table 2.3. In the following, CHL estimations from the previous algorithms 

will be referred as CHL_OC4, CHL_NIR-red and CHL_OC5 respectively.  

Table 2.3: Description of the three CHL algorithms considered in this study.  

algorithm reference description 

OC4 Morel and Antoine (2011) 𝐶ℎ𝑙𝑎 = 10(𝑎+𝑏𝑅+𝑐𝑅2+𝑑𝑅3+𝑒𝑅4) 

where 𝑅 = 𝑙𝑜𝑔10 (𝑚𝑎𝑥 (𝜌𝑤443

𝜌𝑤560
,

𝜌𝑤 490

𝜌𝑤560
,

𝜌𝑤 510

𝜌𝑤 560
)) 

𝑎 = 0.4502748,𝑏 = −3.259491,𝑐 = 3.52271, 

𝑑 = −3.359422,𝑒 = 0.949586  

OC5 Gohin et al., (2002) CHL is a function of CHL_OC4, ρw412 and ρw560. 

Specific OC5 LUTS for MERIS where provided by F. Gohin.  

NIR-red 

band ratio 

Gons et al., (2002) 
𝐶ℎ𝑙𝑎 =

1

0.0146
∙
𝜌𝑤665

𝜌𝑤709
∙ (0.827 + 𝑏𝑏) − 0.429− 𝑏𝑏

1.06
 

𝑏𝑏 =
1.61 ∙ 𝜌𝑤 779

(0.082− 0.6 ∙ 𝜌𝑤 779)
 

2.3.2. Assessment of satellite CHL estimations 

Following recommendations of Baileys and Werdell (2006) satellite CHL estimations was assessed against 

in situ data with the metrics listed below: 

 The median ratio (MR hereafter) is defined as  

𝑀𝑅 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝐶ℎ𝑙−𝑎𝑠𝑎𝑡

𝐶ℎ𝑙−𝑎𝑠𝑖𝑡𝑢
)            Equation (2.1)  

This metrics allow to measure a potential bias in the CHL estimation. If satellite estimations 

overestimate CHL concentration MR will be significantly higher than 1, if CHL concentrations are 

underestimated MR will be significantly lower than 1.  

 The semi-interquartile range (SIQR) of the satellite to in situ ratio measures the uncertainty of the 

data. It is calculated via:  

𝑆𝐼𝑄𝑅 =
𝑄3−𝑄1

2
               Equation (2.2) 

Where Q3 and Q1 are the third and first quartile of the satellite to in situ CHL ratios.  

 The median absolute percent difference (MAPD) indicates the median relative error in percentage. 

It is computed via 

𝑀𝐴𝑃𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (100 ×
|𝐶ℎ𝑙−𝑎𝑠𝑎𝑡−𝐶ℎ𝑙−𝑎𝑠𝑖𝑡𝑢|

𝐶ℎ𝑙−𝑎𝑠𝑖𝑡𝑢
)        Equation (2.3) 
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2.3.3. Conditions of applicability for OC4 and OC5 

ee et al., (2006) have shown that pixels from ocean colour images can be identified as case 1 waters where 

CDOM and SPM concentrations are functions of CHL concentration. Indeed, CHL can be approximated with 

the green – blue band ratio (ρw560/ρw490, named R53 hereafter) and SPM by the reflectance at 560nm 

(ρw560, named R5 hereafter). CDOM is inversely related to the band ratio ρw412/ρw443 (named R12 

hereafter). Hence, in case 1 waters, R12 and R5 are functions of R53 which is the proxy for CHL. To define 

the average case 1 water relationship between R12 and R53 and between R5 and R53, Lee et al., (2006) 

considered all pixels of the global ocean and computed a 3-degree polynomial linear regression. All pixels 

deviating by more than 10% from the average model were considered as case 2 waters. In practice most of 

the case 2 pixels could be explained by a high CDOM content compared to CHL with points below the 

minus 10% limit of the R12 and R53 model and/or by high SPM content compared to CHL concentration 

with points above the plus 10% limit of the R5 and R53 model.  

Here we present an approach to determine the applicability of blue-green ratio algorithms (i.e. OC4 and 

OC5) in case 2 waters by detecting their limits in delivering accurate CHL estimates (APD ≤ 50%) in high 

SPM and CDOM conditions. The method used is similar to the one proposed by Lee et al . (2006). First, the 

average model between R12 and R53 (i.e. CDOM limit) and between log10(R5) and R53 (i.e. SPM limit) is 

computed from data points having a low error (APD ≤ 50%) using a 2-degree polynomial linear regression. 

The logarithm transformation has been used on reflectance data, but not on reflectance ratios, to better fit 

with the normal distribution requirements of the linear regression. Two average models for each of the 

OC4 and OC5 algorithms are then obtained. They have the following form: 

(𝑅12)𝑂𝐶4𝑚𝑜𝑑𝑒𝑙
= 𝑎 + 𝑏(𝑅53) + 𝑐(𝑅53) 2 = 𝑀𝑅12𝑂𝐶4

(𝑅53)    Equation (2.4) 

𝑙𝑜𝑔10(𝑅5)𝑂𝐶4𝑚𝑜𝑑𝑒𝑙
= 𝑎 + 𝑏(𝑅53) + 𝑐(𝑅53)2 = 𝑀𝑙𝑜𝑔𝑅5𝑂𝐶4

(𝑅53)    Equation (2.5) 

 

(𝑅12)𝑂𝐶5𝑚𝑜𝑑𝑒𝑙
= 𝑎 + 𝑏(𝑅53) + 𝑐(𝑅53) 2 = 𝑀𝑅12𝑂𝐶4

(𝑅53)    Equation (2.6) 

𝑙𝑜𝑔10(𝑅5)𝑂𝐶5𝑚𝑜𝑑𝑒𝑙
= 𝑎 + 𝑏(𝑅53) + 𝑐(𝑅53)2 = 𝑀𝑙𝑜𝑔𝑅5𝑂𝐶5

(𝑅53)  Equation (2.7) 

Next, the model limits for R12 were determined where high CDOM concentrations are suspected which are 

expected to result in CHL estimates using OC4 and OC5 with APD > 50%. Similarly, the model limits for 

log10(R5) are determined where high SPM concentrations are suspected and OC4 or OC5 are not able to 

provide accurate CHL estimates. These limits are defined as a function of root mean square error (RMSE) 

such as 

𝑙𝑅12𝑂𝐶4
= 𝑀𝑅12𝑂𝐶4

(𝑅53) − 𝑥1.𝑅𝑀𝑆𝐸𝑅12𝑂𝐶4
    Equation (2.8) 

𝑙 𝑙𝑜𝑔𝑅5𝑂𝐶4
= 𝑀𝑙𝑜𝑔𝑅5𝑂𝐶4

(𝑅53) + 𝑥2. 𝑅𝑀𝑆𝐸𝑙𝑜𝑔𝑅5𝑂𝐶4
    Equation (2.9) 

𝑙𝑅12𝑂𝐶5
= 𝑀𝑅12𝑂𝐶5

(𝑅53) − 𝑥3. 𝑅𝑀𝑆𝐸𝑅12𝑂𝐶5
    Equation (2.10) 

𝑙 𝑙𝑜𝑔𝑅5𝑂𝐶5
= 𝑀𝑙𝑜𝑔𝑅5𝑂𝐶5

(𝑅53) + 𝑥4. 𝑅𝑀𝑆𝐸𝑙𝑜𝑔𝑅5𝑂𝐶5
    Equation (2.11) 
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The values of x1, x2, x3 and x4 were determined by maximizing a cost function which attributes positive 

points to “good” data points (i.e. low error) and negative points to “bad” data points (i.e. high error) (see 

Section 2.3.5 for details).  

These limit functions allow to constrain the utilization of the OC4 and OC5 algorithms to avoid CHL 

underestimation in case of high SPM or CDOM content. However, these tests only apply to a certain range 

of CHL values (Lee et al., 2006) and under certain SPM and CDOM conditions. OC4 and OC5 algorithms 

applies only on oligotrophic waters (Odermatt et al., 2012; Matsusha et al., 2015; Smith et al., 2018). Based 

on these studies a first test on CHL_OC4 and CHL_OC5 is applied to verify that CHL_OC4 or CHL_OC5 is 

lower than 10 g.m-3. Looking at the scatter plot of R12 as a function of R53 (Figures 2.12 and 2.14), it 

appears that some CHL estimates characterized by a high R12 band ratio (R12 > 1.25) are underestimated 

by OC4 and OC5 algorithms. We suspect for these points a failure of the atmospheric correction algorithms 

as it is expected that the minimum CDOM concentration is observed in case 1 waters. Data points with a 

R12 band ratio higher than 1.25 are flagged as “possible atmospheric correction error”.  

Finally, flowchart on figure 2.5 shows the successive tests applied to each data point to decide if OC4 or 

OC5 algorithm should be applied on each pixel.  

 

Figure 2.5: Flow chart showing the different steps driving to a decision of application of the OC4 or OC5 algorithms. The 

expression “OCx” in the chart should be replaced by “OC4” or “OC5”. 
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2.3.4. Conditions of applicability for red-NIR algorithm (Gons) 

NIR-red band ratio algorithm is based on the CHL signal in the red-NIR region of the reflectance spectra. 

This signal is marked by a reflectance minimum at 662 nm followed by a reflectance maximum around 700 

nm (Ruddick et al., 2001). This pattern is due to the combined effect of CHL absorption at 662 nm and 

scattering in the red-NIR region of the spectrum. It is clearly observed in eutrophic and turbid waters but in 

oligotrophic waters, water leavings reflectances are generally very low and the NIR-red band ratio is 

strongly affected by radiometric noise driving to very scattered and erroneous CHL estimates (see Figure 

2.7, panel C). Hence, decision of application of the Gons et al., 2002 algorithm was based on the CHL and 

turbidity levels. As for low to mid CHL concentrations, OC4 algorithm is more reliable than NIR-red band 

ratio algorithm (compare Figure 2.7 panels A and C), CHL_OC4 was used as a proxy of CHL concentration 

and water leaving reflectance at 620nm (ρw620, R6 hereafter) was used as a proxy of turbidity. Then, 

optimal CHL_OC4 and R6 thresholds were determined by maximizing the same cost function as for OC4 

and OC5 algorithms (see Section 2.3.5 for details). These thresholds are named l CHL/red-NIR and lR6/red-NIR. 

When CHL_OC4 is higher than lCHL/red-NIR and when R6 is higher than lR6/red-NIR, red-NIR algorithm can be 

applied. Finally, an additional check is done to verify that the CHL_red-NIR estimate is at least higher than 2 

mg m-3. Figure 2.6 represents the different steps which drive to the application of the NIR-red band ratio 

algorithm.  

 

Figure 2.6: Flow chart showing the different steps driving to a decision of application of the NIR-red Gons et al., (2002) 

algorithm. 

2.3.5. Successive sampling 

The initial dataset of 348 data points has been randomly divided into two datasets of 174 data points. The 

first dataset is used to compute the limits of application of the OC4, OC5 and NIR-red band ratio algorithms 

and the second dataset was used to validate the performances of the selection algorithm developed. 
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Performances are assessed by comparing the performance of the OC4, OC5 and NIR-red band ratio 

algorithms when all the points of the validation dataset are considered and the performances of the same 

CHL algorithms when only points corresponding to the newly developed criteria of selection are 

considered. 

This step of dataset division, training and validation was repeated 100 times resulting in different training 

and validation datasets. Finally, the median results of the 100 repetitions were used as to define the final 

selection criteria as reported in Table 2.4.  

Table 2.4: List of coefficients necessary to compute lR12_OC4, lR12_OC5, llogR5_OC4 and llogR5_OC5 and apply algorithm selection 

methodology presented on Figure 2.7. Note that for the NIR-red_Gons algorithm (Figure 2.7c) lCHL_NIR-red = 8.5 mg m-3 and lR6_NIR-

red=0.0081. 

 

2.3.6. Determination of limit values 

To determine the best position of the different limits (lR12_OC4, llogR5_OC4, lR12_OC5, lLOGR5_OC5, lCHL/red-NIR and 

lR6/red-NIR), a cost function is defined. This function is defined as 

 

𝐶𝐹 = ∑ 𝑦𝑖𝑖  with {

𝑦𝑖 = +5𝑖𝑓𝐴𝑃𝐷𝑖 ≤ 30

𝑦𝑖 = +2𝑖𝑓30 < 𝐴𝑃𝐷𝑖 ≤ 50

𝑦𝑖 = −2𝑖𝑓50 < 𝐴𝑃𝐷𝑖 ≤ 100
𝑦𝑖 = −5𝑖𝑓𝐴𝑃𝐷𝑖 > 100

                                                                                     Equation 

2.12 

i stands for any point in the selection data set. Criteria of selection changes for each algorithm. For the OC4 

and OC5 algorithms, the point i is in the selection if R12i > lR12_OCx  and log10(R5i) < llogR5_OCx. For the NIR-red 

band ratio algorithm, the point i  is in the selection if CHL_OC4i > lCHL_NIR-red and R6i > lR6_NIR-red. APD is the 

absolute percent difference and is defined as  

𝐴𝑃𝐷 = 100 |
𝐶ℎ𝑙𝑎𝑠𝑎𝑡−𝐶ℎ𝑙𝑎𝑠𝑖𝑡𝑢

𝐶ℎ𝑙𝑎𝑠𝑖𝑡𝑢
|                                                                                                                       Equation 

2.13 

CF is then defined to increase with the number of “good  points” (APD < 50%) in the selection but to 

decrease with the number of “bad points” in the selection (APD > 50%). By attempting to maximize CF, we 

look for the best compromise between including the largest number of “good points” in the selection while 

avoiding “bad points”. CF is then computed for a large range of values for each limit. In case of OC4 and 
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OC5 algorithms, limits value depends of variables x 1, x2, x3 and x4 (see Equations 2.8 to 2.11) and CF is 

computed for x1, x2, x3 and x4 ranging between 0 and 5 by step of 0.1. In case of the NIR-red band ratio 

algorithm, CF is computed for lCHL_NIR-red ranging between 0.5 and 50 by step of 0.1 and for lR6_NIR-red ranging 

between 10-4 and 10-2 by step of 10-1. Then, final limits are defined with the x1, x2, x3, x4, lCHL_NIR-red and lR6_NIR-

red values which maximize CF.  

2.3.7. Performance of CHL algorithms on the CCRR-MERMAID dataset 

OC4, OC5 and NIR-red band ratio algorithms have been tested against the whole CCRR/MERMAID dataset 

(Figure 2.7, Table 2.3). Results show the OC5 algorithm performs the best with a median error of 39% and a 

slight overestimation (median ratio = 1.17). Most of the points are close to the 1:1 line and uncertainty is 

estimated with RMSE to be 2.36 mg m-3. OC4 algorithm clearly tends to overestimate CHL concentration as 

most of the points are above the 1:1 line and the median ratio is 1.92. MAPD is 92.0% far from its 

performances in case 1 waters (i.e. 30%, Baileys and Werdell, 2006) and the distribution is rather scattered 

(RMSE = 9.33 mg m-3). These results confirmed the previously observed tendency of the OC4 algorithm to 

overestimate CHL concentration in coastal waters (Tilstone et al, 2017) and as expected, OC5 algorithm 

tends to correct this overestimation. A saturation effect for high CHL values was expected by OC4 and OC5 

algorithms (Matsushita et al., 2015) but not observed. This might be due to the weak representation of 

eutrophic waters in our dataset (in the dataset CHL ranges from 0.05 mg m-3 to 31 mg m-3
 only).  

The NIR-red algorithm (Gons et al., 2002) performances confirm expected patterns with highly scattered 

and erroneous CHL estimates for low to moderate CHL values (CHL < 10 mg m -3). In fact, only high in situ 

CHL values have satellite estimates along the 1:1 line.  

The moderate to bad performances of the OC5, OC4 and NIR-red band ratio algorithms on the whole 

coastal dataset stressed the necessity to define a quality control for each of these algorithms and to avoid 

their utilization when it is not appropriate.  

 

 

 

 

 

 

Figure 2.7: in situ CHL as a function of CHL computed from MERIS reflectance with OC4 (panel A), OC5 (panel B) and NIR-red 

band ratio algorithm (panel C). 

2.3.8. Quality control for OC4 algorithm 

Figure 2.8 shows the distribution of R53, a proxy of CHL, as a function of R12, inversely related to CDOM 

(panel A) and of R53 as a function of ρw560, a proxy of SPM (panel B). For each point, the relative error 
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which is measured with the percent difference between the OC4 estimation and the in -situ measurement 

is indicated with a colour code. Results show that low R12 and high ρw560 values at constant R53 value 

tend to drive to an overestimation of CHL by the OC4 algorithm (red and orange points). This result is 

consistent with previous findings which pointed out the CHL overestimation by OC4 algorithm in case of 

high CDOM or SPM.  

The different versions of the MR12_OC4 and MlogR5OC4 models computed on the basis of a half dataset (see 

Section 2.3.5 and Equations 2.8 and 2.9, solid grey lines on Figure 2.8) are quite close to each other and are 

well represented with the median model (thick solid black lines figure 2.8). The limits lR12_OC4 and llogR5_OC4 

under which and above which, respectively, a data point is not selected to be processed with OC4 (dotted 

lines on Figure 2.8) are quite close to the model lines suggesting that OC4 is only adapted to a narrow 

range of SPM and CDOM conditions. This drives to the selection of a small percentage (about 25%) of 

coastal data points to be retained but the performances of the algorithm are si gnificantly improved when 

applied to the subset (see Figure 2.9, Table 2.2). Figure 2.9 show the distribution of each performance 

metrics when applied to the whole validation dataset (blue boxplots) and when applied to selected 

subsamples after application of the OC4 quality control (yellow boxplots). For the OC4 algorithm (top 

panels on Figure 2.8), the boxplot comparison shows a clear improvement of all metrics when the quality 

control is applied to OC4. When the quality control (coefficients are given in  Table 2.4) is applied to the 

whole CCRR-MERMAID dataset, only 92 data points (26%) are selected but the OC4 performance are much 

higher and comparable to the one observed in the training-validation phase and displayed on Figure 2.8. 

These performances reach also the levels expected of a remote sensing CHL algorithm.  

 

Table 2.6: Performances of the OC4, OC5 and NIR-red band ratio algorithm when they are tested against the whole dataset 

and when they are tested only against the selected data points (referred with the “QC” mention).  

 N MR SIQR MAPD slope intercept RMSE r2 

OC4 348 1.92 1.12 92.0% 2.15 0.73 9.33 0.47 

OC5 346 1.17 0.50 39.1% 0.85 0.59 2.36 0.69 

NIR-red 348 -0.90 17.1 420% 4.92 -37.80 156.2 0.02 

OC4 QC 92 1.25 0.42 37.3% 1.23 0.11 1.00 0.73 

OC5 QC 231 1.09 0.44 31.9% 0.63 0.86 1.44 0.62 

NIR-red QC 44 1.17 0.34 39.5% 0.92 1.34 5.22 0.65 

Merged  259 1.25 0.46 34.9% 1.34 -0.15 3.02 0.79 
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Figure 2.8: R12 as a function of R53 (panel A) and R5 as a function of R12 (panel B). Color of dots refers to the error (percent 

difference, PD) of the OC4 algorithm compared to in situ measurements. Grey lines show 20 examples of models (solid lines, 

MR12_OC4, panel A and MlogR5OC4 panel B) and limits (dotted lines, lR12_OC4 panel A and llogR5_OC4 panel B) computed from a random 

training dataset (50% of the whole dataset, see Section 2.3.5 for details). Thick black solid and dotted lines show the final  

model and limits. In panel A, dotted blue line show the upper limit (R12=1.25) of the R12 variable. Coefficients are given in 

Table 2.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Box-plots comparing the performances of the OC4 (top panels), OC5 (middle panels) and NIR-red band ratio 

(bottom panels)  algorithms on the full validation dataset (blue-boxplots, 50% of the whole CCRR-MERMAID dataset randomly 

selected) to the subset of points selected to application of the algorithm (yellow box-plots). 
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2.3.9. Quality control for OC5 algorithm 

Figure 2.10 shows that the OC5 algorithm performs for a wider range of R12 and ρ w560 at constant R53 

than OC4. Green points are sparser on Figure 2.10 than on Figure 2.8 and the limit curves: lR12_OC5 and 

llogR_OC5 are further from MR12_OC5 and Mlog5_OC5 than it is the case with the OC4 algorithm on 

Figure 2.8, confirming that OC5 performs well for a larger range of CDOM and SPM values than OC4. 

Nevertheless, it appears that for very low R12 and high ρ w560 values, OC5 tends to overestimate CHL 

which shows the necessity to also constrain OC5 algorithm.  

Regarding performances with and without quality control, Figure 2.9 shows that the quality control allows 

to reduce the OC5 positive bias (MR is reduced), as well as the uncertainty (RMSE reduced) and the relative 

error. In fact, for most of the simulations MDP ranges between 28% and 35% against 38% to 41% when 

OC5 is applied to the whole validation dataset. Only r², the coefficient of determination of the linear 

regression between in situ and satellite estimates, as well as the slope and the intercept of the linear 

model doesn’t really improve after applying the quality control. This effect can be explained by the fact 

that the CHL range is slightly reduced (all points with CHL_OC5 > 10 mg m -3 are eliminated). Overall, the 

performances of the 100 repetitions in the training-validation phase are in agreement with the 

performance of the OC5 algorithm with quality control (coefficients given in Table 2.3) tested over the 

whole CCRR-MERMAID dataset (Table 2).   

 

 

 

 

 

 

 

 

 

Figure 2.14: R12 as a function of R53 (panel A) and R5 as a function of R12 (panel B). Color of dots refers to the error (percent 

difference, PD) of the OC5 algorithm compared to in situ measurements. Grey lines show 20 examples of models (solid lines, 

MR12_OC4, panel A and MlogR5OC4 panel B) and limits (dotted lines, lR12_OC4 panel A and llogR5_OC4 panel B) computed from a random 

training dataset (50% of the whole dataset, see Section 2.3.5 for details). Thick black solid and dotted lines show the final  

model and limits. In panel A, dotted blue line show the upper limit (R12=1.25) of the R12 var iable. Coefficients are given in 

Table 2.4.  Orange dotted lines represent the limits of application of the OC5 algorithm in case of extended utilisation of t he 

algorithm (see Section 2.3.12) 
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2.3.10. Quality control for red-NIR ratio algorithm 

Figure 2.11 shows the distribution of CHL_OC4 as a function ρw620 with a colour code indicating the 

performance of the NIR-red band ratio algorithm for each point. For low CHL_OC4 values (CHL_OC4 < 5 mg 

m-3) and low ρw620 values (ρw620 < 0.002), NIR-red algorithm is failing for almost all points with generally a 

strong underestimation (dark blue points) or a strong overestimation (red points). It clearly appears that a 

certain threshold for CHL_OC4 and ρw620 is necessary to obtain accurate estimates of CHL by this 

algorithm. In most of the 100 simulations performed, these thresholds calculated on a randomly defined 

training dataset (50% of the CCRR-MERMAID dataset) ranges between 7.5 mg m-3 and 12 mg m-3 for CHL 

and between 0.007 and 0.0085 for ρw620. The final threshold defined as the median of the 100 simulations 

are 8.5 mg m-3 for CHL_OC4 and 0.0081 for ρw620. Given the very poor performances of the NIR-red band 

ratio algorithm when applied to the whole CCRR-MERMAID dataset the selection algorithm clearly 

improves the NIR-red band ratio algorithm performance. With data selection, algorithm is almost unbiased 

(MR ranges between 0.97 and 1.2) and the median error reaches acceptable values (MPD ranges between 

23% and 40%). The linear regression model between in situ and satellite  values is also close to 1:1 line with 

a coefficient of determination mostly ranging between 0.20 and 0.76 for the different simulations. In 

comparison to OC4 and OC5, the algorithm’s uncertainty measured with RMSE is higher with most of the 

RMSE values ranging between 2.3 and 3.4 mg m-3. This specificity can be explained by the fact that NIR-red 

band ratio algorithm applies for high ranges of CHL concentrations driving to a higher uncertainty in 

absolute values. Finally, the performance of the red-NIR algorithm with the quality control is in agreement 

with the performances of the red-NIR algorithm performances of the 100 repetitions in the training-

validation phase and shown on Figure 2.9 (bottom panels).  

 

 

 

 

 

 

 

 

 

 

Figure 2.11: ρw620 as a function of CHL_OC4. Color of dots refers to the error (percent difference, PD) of the NIR-red Gons et 

al. (2002) algorithm compared to in situ measurements. Grey lines show 20 examples of limits for CHL_OC4 (vertical lines) and  

ρw620 (horizontal lines) computed from a random training dataset (50% of the CCRR-MERMAID dataset). Thick black dotted 

lines show the final limits lines.  
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2.3.11. Quality control for OC4_Bal algorithm 

The algorithm developed by Pitarch et al. (2016) for Baltic Sea (named OC4_BAL hereafter) was also tested 

with CCRR-MERMAID database. Although this algorithm was developed for SeaWiFS sensor, it was tested 

against the MERIS MEGS8.1 database. As, there is only a 1% difference between reflectance at 555 nm 

(SeaWiFS band) and at 560 nm (MERIS bands ,Melin and Sclep, 2015 ) results were not significantly 

impacted by band shifting. Results on Figure 2.12 show that OC4_BAL underestimates CHL concentration 

when CHL is lower than 1 mg m-3. The same methodology as the one applied to OC4 and OC5 algorithms 

was applied to OC4_BAL results (Figure 2.13) show that there is no clear impact of reflectance at 560nm 

and only a limit based on R12 (proxy of CDOM) could be developed. Finally, we decided to apply this 

algorithm only when CHL_OC4_BAL was between 1 and 10 mg m-3 and when R12 was upper the limit 

(dotted line on Figure 2.13).  

 

 

 

 

 

 

 

 

 

 

Figure 2.12: CHL in situ as a function of satellite CHL estimation with OC4_BAL algorithm. Color code is for error measured 

with the percent difference between in situ observation and satellite estimation.  
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Figure 2.13: R12 as a function of R53. Color code indicates the percentage error of the OC_BAL algorithm in estimation CHL. 

Solid line is the average model when only low error points are considered (APD < 50%) and the dotted line is lower limit of 

application of the OC4_BAL algorithm.  

2.3.12. Best algorithm combination and limits of used dataset 

This section presents conditions of application to determine if OC4, OC4_Bal, OC5 and NIR-

red_Gons algorithms should be applied on a pixel basis. Each algorithm has its own rules which are 

independent of the other algorithm performances. So, it happens that a certain pixel can be processed by 

two algorithms or by none algorithm. In fact, all points which validate  conditions of application of the OC4 

algorithm also validate the OC5 algorithm and in the CCRR-MERMAID dataset 19 points verified the 

conditions of application of OC5 and NIR-red_Gons algorithms. To determine how to handle 

these particular cases we tested on the intersection subsets the performances of each algorithm which 

applies as well as their average. Results are presented in table 2.7 (OC4/OC5) and table 2.8 (OC5/NIR -

red_Gons). For the OC4/OC5 intersection, results show that OC4 still tends to overestimate CHL (MR=1.25) 

whereas OC5 slightly underestimate CHL (MR=0.92). OC5 presents the best MAPD but it seems that the 

linear model is slightly better with OC4. Finally, the point by point average of OC4 and OC5 CHL estimations 

presents interesting results with almost no bias (MR=1.05), a MAPD less than 30% and a linear model very 

close to the 1:1 line. Regarding the OC5 and NIR-red band ratio algorithms, OC5 presents better results 

regarding the accuracy of the CHL estimation (see MR and MAPD on Table 2.8) but the linear regression 

model is pretty poor with a slope of 0.17 and a r2 of 0.19 suggesting that OC5 CHL estimations for this 

subset of points are rather constant. The average model seems then to be a good option to improve this 

aspect while keeping acceptable accuracy and uncertainty (MR=1.41 and RMSE=2.67). Hence, we would 

recommend to apply a point by point average if OC4 and OC5 or OC5 and NIR-red_Gons algorithms are 

valid for a same in pixel. In addition, this methodology allows to smooth discont inuities that might be 

produced by an algorithm shift when processing satellite images. Performances of the final algorithm 

selection and combinations are presented on table 2.6 (line named “merged algorithm”) and figure 2.14. 



 
 
 

27 
 

The process allowed to estimate CHL for 74.4% of the data point. The average error is of 35% and the 

points are well aligned along the 1:1 line (see Figure 2.14, r2 of the linear regression = 79%). Most of points 

(64%) are within the plus or minus 50% error range which can be consider as an acceptable error on CHL 

estimation in coastal water. The majority of points out of this range present an overestimation of the in 

situ CHL measurements.  

 

One of the weakness of this methodology for CHL estimation is its ability to estimate CHL in only 74.4% 

percent of the cases. By applying it on a set of MERIS images we observed that during winter season most 

of the North Sea could be labelled as “not processed” because of too high SPM levels. To help fixing this 

point we proposed to extend the conditions of utilization of the OC5 algorithm as this algorithm present 

the best results on the whole CCRR-MERMAID dataset. Hence, we propose extra extended values for 

x3 (extended x3=3.2) and x4 (extended x4=2.5) to define extended limits lR12_OC5 and llogR5_OC5 respectively 

(see also the orange dotted lines on Figure 2.10). These values have been chosen on the basis of tests 

performed on MERIS images and on the properties of the CCRR-MERMAID dataset. On one hand they have 

to allow to perform most of the images but on the other hand new R12 and ρw620 limits has to be in the 

CCRR-MERMAID dataset range for these variables. These extended OC5 conditions allowed to process 42 

additional data points (in grey on the Figure 2.14). These data points present a MAPD of 70% and a 

significant overestimation. However, it might be interesting in some applications to process  the most of 

the satellite image keeping in mind that for some part of the CHL image, accuracy in lower with possibly an 

overestimation. Overall, when added to the whole dataset, these additional data points only slightly 

decrease the performance metrics (compare on Table 2.6, lines named “merged” and “merged / OC5 

extended”).   

       

Finally, one might wonder on the global benefit of this “complex” algorithm selection method compared to 

the only utilization of the OC5 algorithm as it shows the best performances compared to OC4 and NIR -

red_Gons algorithms. The CCRR-MERMAID dataset represents mostly average coastal water properties and 

extreme water properties in terms of turbidity, CDOM and CHL are certainly lower-represented in this 

dataset. As it has been proved that OC5 tends to fail in case of high CDOM or SPM concentrations 

(see Figure 2.10) or in case of eutrophic waters (Tilstone et al., 2017), it is then important to determine 

limits of application of this algorithm and to propose alternative algorithms when possible. Whatever the 

limits: “optimized” or “extended”, the future user will be certain to use OC5 within its conditions of 

application and will be aware of the associate uncertainty. In case of ultra-oligotrophic case 1 waters (CHL 

< 0.15 mg m-3) which is out of the scope of the paper, we would recommend to future user to switch to the 

OC4 only algorithm or to the CI approach (Hu, 2012) as it i s already performed in several satellite CHL 

products (i.e. CMEMS product 2.1 in table 2.1) 
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Figure 2.14: In situ CHL observations as a function of satellite CHL estimations after having applied algorithm selections and 

multi-algorithms merging methodologies presented in this paper. Color code indicates for each point which CHL algorithms 

has been selected. Dotted lines represent the ±50% error interval.   

Table 2.7: Comparison of the performances of the OC4, OC5 and point by point average OC4 -OC5 algorithms on the subset of 

points where OC4 and OC5 apply.  

  N  MR  MAPD  slope  intercept  RMSE  r2
  

OC4   92  1.25  37.3%  1.23  0.11  1.00  0.73  

OC5  92  0.92  27.0%  0.76  0.26  0.66  0.70  

average: OC4-OC5  92  1.05  29.4%  1.00  0.185  0.82  0.72  
 

Table 2.8: Comparison of the performances of the OC5, NIR-red band ratio and point by point average OC5 – NIR-red 

algorithms on the subset of points where OC5 and NIR-red apply.  

  N  MR  MAPD  slope  intercept  RMSE  r2
  

OC5  19  1.18  34.3%  0.17  5.65  2.07  0.19  

NIR-red  19  1.67  66.7%  0.66  5.54  4.12  0.46  

average: OC5-NIR-red  19  1.41  44.0%  0.41  5.60  2.67  0.45  

 

2.3.13. Application to MERIS data 

Four, clouds free, images of the Atlantic French coast and North Sea have been selected from the MERIS 

archive to represent different seasons. The developed methodology for CHL algorithm selection has been 

applied to each image (Figure 2.15) and final CHL maps have been produced (Figure 2.16). Results show 

that OC5 algorithm is dominant most of the year in this region except for certain locations and periods. 

Because of high turbidity, the winter image (2008/02/11) shows that CHL concentration can be processed 

only if extended conditions of the OC5 algorithm are accepted. In addition, some spots fl agged as “high 

SPM” with the OC5 algorithm cannot be processed by none of the three  CHL algorithms presented here. 



 
 
 

29 
 

These spots generally correspond to very turbid zones visible on the RGB true color image. In the image of 

the 2004/05/24, a large area offshore the French Atlantic coast was also flagged as “No algo” surrounding 

by “OC5 ext”, this spot which occurs during the spring bloom season was identified as a Coccolithophores 

bloom from the RGB image. Coccolithophores have a calcite envelope which scatte rs light, affecting 

standard CHL algorithms and explaining the flag “high SPM” returned by the OC5 test algorithm. OC4 

algorithm was only applied in the image of the 2005/09/19 off shore the French Atlantic coast. At this 

season, main rivers discharge is low and off shore Atlantic waters are expected to be close to case -

1 waters. NIR-red band ratio algorithm is applied in very coastal areas: the South Eastern UK coast with the 

Tames estuary, the Severn estuary on the South Western UK coast and the Belgium and Netherland coasts 

during spring and summer. These regions correspond to very turbid and eutrophic regions (Ruddick et al., 

2003). Although, a few pixels are concerned by the NIR-red band ratio algorithms, they are very important 

for coastal environment monitoring and eutrophication reporting such as the MSFD. It is then important to 

process these pixels with the best care. CHL maps (Figure 2.16) shows that CHL ranges between 0.5 and 

more than 8 mg m-3 with highest values along the UK, Belgium and Netherland coast. In the English 

Channel and central North Sea, CHL is highest in spring and summer with values reaching 3 mg m -3 in the 

English Channel and more than 7 mg m3 in the North Sea.    
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Figure 2.15: Results of application of the CHL algorithm methodology developed in this paper on 4 MERIS images processed 

from ODESA (http://www.odesa-info.eu/info/) with MEGS8.1 version.   
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Figure 2.16: For the same images as Figure 2.15, resulting CHL maps. 
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2.3.14. Application to Sentinel-3 OLCI data 

A first tentative to apply the algorithm selection methodology is presented on an image taken on 

2017/06/18 from the OLCI instrument onboard the Sentinel 3A satellite. L1 data have been downloaded at 

the reduced resolution and processed with the POLYMER atmospheric correction processor (Steinmetz et 

al., 2011). This atmospheric correction algorithm is dedicated to complex waters and show positive results 

on OLCI when compared with aeronet stations (Zibordi et al., 2009) located in the North Sea (results not 

shown). Although a future validation of OLCI CHL_OC5 is needed, OC5 LUTs published for MERIS were 

applied to the OLCI data that have comparable spectral bands. Figure 2.17 shows a large application of the 

OC5 algorithm with some areas offshore the French and UK coast regions were the OC4 algorithm is also 

valid. Along the coast, the OC5 algorithm is accepted in its extended conditions due to higher turbidity. 

Offshore the coast, in the Irish Sea other spots show the “OC5 EXT” flags. These areas correspond to 

blooms of Coccolithores as also observed on the MERIS image of the 2014/05/24. Finally, the NIR-

red_Gons algorithm is selected in the Wadden Sea North of Netherlands.  CHL map shows values ranging 

between 0.15 and 8 mg m-3, similarly to the MERIS images, we observed highest CHL value along the coast 

close to estuaries and higher CHL values in the North Sea than in the English Chanel. Results presented 

here need to be validated against in situ measurements, but as a first observation they are consistent with 

MERIS results which suggests that the present methodology should be easily adaptable to OLCI data. The 

benefit of the 705 nm band on OLCI instrument combined with the present approach should definitively 

help to better estimate CHL concentration from space in coastal waters for the next decade.   

 

 

 

 

 

 

 

 

 

 

Figure 2.17: results of application of the CHL algorithm methodology developed in this paper on the OLCI reduced 

resolution image taken on 2017/06/18. Left panel show algorithm selection and right panel resulting CHL map. OLCI image 

has been processed from level 1 with the POLYMER atmospheric correction (Steinmetz et al., 2011).  
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2.3.15. Conclusion Quality control protocol 

From a dataset of 358 in situ CHL / MERIS matchups, conditions of application for the OC4, OC5 and NIR-

red_Gons algorithms were determined using water leaving reflectance only. OC4 and OC5 conditions of 

application are based on ρw412/ρw443 and ρw560, as a function of ρw560/ρw490 and NIR-

red_Gons conditions of application depends of CHL_OC4 and ρw620. Results showed that with a pixel 

selection, performances of the three selected algorithms are improved and almost reach the standards 

expected in open ocean. After combining these algorithms, 74% of the dataset could be processed with a 

median error of 34% (Table 2.6). Methodology was then tested on four MERIS images of European waters 

and show that OC5 algorithm is dominant except in very turbid and eutrophic waters along the coast. In 

these locations, the NIR-red band ratio algorithm helps filling the gap. Finally, a test was performed on an 

OLCI-A image. Although some validations are still needed for the OLCI sensors, results show some 

agreements with MERIS applications which suggest that the present methodology should be easily 

adaptable to OLCI data. Then we expect that this methodology combined with OLCI data will help to 

monitor CHL in coastal waters which is essential for certain applications like eutrophication management.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

34 
 

2.4. Merging of QC on JMP-EUNOSAT satellite archive 

With the ability to determine the validity of the chlorophyll -a algorithms per water type on a pixel-per-pixel 

basis we performed the quality control procedure described in section 2.3 to the core satellite products 

described in section 2.2. An example is provided in Figure 2.18 A&B with the application of this approach 

on satellite observations for the 8th of April 2010 for the OC4 and OC5 products showing an algal bloom in 

the Belgian and Dutch coastal waters. Figure 2.18 C&D shows a classification map indicating the water 

types where the OC4 and OC5 algorithms are applicable indicating that the OC5 algorithm can be applied in 

more situations compared to the OC4 algorithm. The OC4 algorithm is inaccurate in the English Channel 

and South-East UK due to high concentrations of suspended matter (SPM).  

  

Figure 2.18. (A & B) Chlorophyll-a CHL products generated using the OC4 and OC5 algorithms for the 8 th of April 2010 showing 

an algal bloom in the Belgian and Dutch coastal waters. (C & D) Water type classification map indicating the water types 

where the OC4 (C) and OC5 (D) algorithms are applicable indicating that the OC5 algorithm can be applied in more situations 

compared to the OC4 algorithm. The OC4 algorithm is inaccurate in the English Channel and South-East UK due to high 

concentrations of suspended matter (SPM). White regions are masked due to cloud cover.  

In the next phase a blending process is applied to join the quality-controlled chlorophyll-a datasets based 

on best suited algorithm/water type combination. A schematic overview of this process is provided in 

figure 2.19 showing three quality-controlled product lines: OC5 (or OC4) for clear waters, red-NIR ratio 

A 

C D 
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products for turbid waters and FUB-WEW/OC4Bal products for the Skagerrak-Kattegat region. Clear and 

turbid waters are defined by the quality control procedures of the respective product lines. The three 

product lines are sequentially merged together with the priority rule of 1) turbid waters, 2) clear waters 

and finally 3) Skagerrak-Kattegat. This logical rule set is based on validation results presented in section x.     

 

 

 

Figure 2.19. Schematic overview of CHL product processor to generate a coherent CHL product based on three quality-

controlled product lines: OC5 (or OC4) for clear waters, red-NIR ratio products for turbid waters and Neural Net and the 

OC4Bal products for Kattegat-Skaggerak region.  Clear and turbid waters are defined by the quality control procedures of the 

respective product lines. The three product lines are sequentially merged together with the priority rule of 1) turbid waters, 2) 

clear waters and finally 3) Kattegat-Skaggerak.    

A demonstration of the blending process is presented if figure 2.20. This shows the different quality 

controlled CHL products (i.e. OC5QC, GonsQC, FUB/OC4Bal) for the 13th of April 2010. These products were 

merged on a pixel by pixel basis with a priority rule given to GonsQC (turbid waters) and then OC5QC (clear 

waters) for the North Sea area. For the Skaggerak-Kattegat area (CDOM rich waters), the pixels were filled 

with CHL-FUB and OC4Bal CHL products with a priority given to CHL-FUB.   
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Figure 2.20: Blending process of different quality controlled CHL products on a pixel per pixel basis. The different quality 

controlled CHL products (i.e. OC5, red-NIR Gons, FUB/OC4Bal) for the 13th of April 2010 are presented in the top row.  These 

CHL products are merged together on a pixel-per-pixel basis with a priority rule given to red-NIR Gons and then OC5 filling up 

the North Sea with the most appropriate algorithms available. Subsequently, the Skagerrak-Kattegat region are filled with 

the FUB/OC4Bal product. White regions are masked due to cloud cover. 
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2.5. Intercomparison of satellite products with ship-based observations  

The validation of satellite ocean color data products is a critical component in establishing their 

measurement uncertainties, assessing their scientific utility, and identifying conditions for which their 

reliability is suspect. Such efforts require a considerable amount of high quality  in situ data, preferably 

consistently processed. In this project we follow the approach of Bailey and Werdell (2006) for validating 

satellite data products using in situ measurements as ground truth. In the process of generating a coherent 

satellite-based CHL product for the greater North Sea it is key to understand the uncertainties of the core 

ocean color satellite products under a variety of water conditions. In this study, we use the comprehensive 

JMP-EUNOSAT in situ data base for our initial validation efforts consisting of regional in situ data collected 

in the national monitoring programs of the North Sea countries as it is a data set of sufficient size, quality, 

and diversity to support a comprehensive validation. While in situ measurements are some times referred 

to as ‘ground-truth’ measurements, they are rarely ‘absolute truth’. Full characterization of the inherent 

error of the field measurement is essential for any validation effort. Unfortunately, such information is 

seldomly available for in situ observations of CHL. Additionally there is currently no consensus between the 

North Sea countries on the method used to assess in situ CHL concentrations ranging from HPLC 

measurements to spectrophotometry and fluorimetry. Still, to enable the acceptance of satellite-based in 

national monitoring programs it is key to compare the satellite products to the national/regional in situ 

data which is officially used in MSFD monitoring efforts. 

 

The validation of satellite-products is performed by: 

 Match-up analysis between satellite and in situ observations in the greater North Sea 

 Match-up analysis between multi-temporal composite CHL satellite and in situ products (yearly)  

 Time series intercomparison for key stations to investigate if satellite observations can capture the 

CHL dynamics 
 

2.5.1. In situ data for CHL product validation 

See section report Activity 1 section 3 for more details.  

Observed data have been received and processed from all countries around the North Sea. The observed 

data differed between countries in sampling depth, sampling frequency, the variables that were measured, 

analysis methods and the units that were used. We pre-processed the data to create a more coherent 

dataset. 

We first: 

 converted all data to the same units; 

 selected only surface CHL observations allowing measurements up to 3m depth. We neglected data 

of deeper water layers since our analysis will focus on concentrations in the upper mixed layer that 

can be observed with satellite; 
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 We allowed CHL observations obtained using different analytical techniques (i.e. HPLC, 

spectrophotometry, fluorimetry) to allow direct comparison with methods currently used by 

different North Sea countries.  

A spatial distribution of the stations is presented in fig 3.1 of the final report of Activity 1.  

2.5.2. Match up protocol 

When directly comparing satellite and in-situ observations it is important to consider differences in both 

spatial and temporal scales of both data sources. The spatial resolution of the core ocean color products is 

1km while a traditional in situ observation can be considered a point measurement. Given the different in 

spatial scales, the ground truth data are ideally collected in regions where the spatial variability of the 

geophysical parameter under consideration is relatively stable for an area several times the spatial 

resolution of the satellite-based instrument (Gordon et al., 1983). This accounts for possible navigation 

errors in the satellite data and minimizes the effect of small -scale spatial variability on the measured in situ 

data. Subpixel geophysical variability is effectively averaged by spaceborne remote sensors, while in situ 

instrumentation does not adequately characterize this variability. Satellite navigation may not be accurate 

to a pixel (Patt, 2002), therefore, a box of some number of pixels (e.g. 3×3) is defined, centered on the 

location of the in-situ measurement. This box allows for the generation of simple statistics, such as the 

mean and standard deviation, to assist in the evaluation of spatial stability, or homogeneity, at the 

validation point. Further, the use of a multi -pixel box increases the possibility of an in-situ measurement 

being available for validation by increasing the chance that the satellite retrieval will have enough clear 

pixels to be useful. Following, the closest pixel to the in-situ location need not be clear, so long as the valid 

pixels in the box meet the homogeneity requirement.  

 

Satellite data are navigated to identify the pixel that corresponds with each in situ location. As the in -situ 

data are rarely collected exactly when the satellite views their location, we assign a temporal threshold in 

our definition of coincidence. This time window is defined to be short enough to reduce the effects of 

temporal variability in the in-situ data, yet sufficiently large to allow for the greatest possibility of a match. 

For the homogeneous water masses under consideration, we assigned a ±2 h window around the satellite 

overpass. 

 

The in-situ data base (section 2.5.1) was directly compared to the satell ite CHL archive (section 2.2) to 

extract match-ups fulfilling the above described criteria. For the satellite data it was required that at least 5 

of the 9 pixels in the defined box (3x3 pixels centered on the in-situ location) be valid (i.e. unflagged) to 

ensure statistical confidence in the mean values retrieved. The arithmetic mean and standard deviation of 

the non-masked pixels is determined. To minimize the effect of outliers on the calculated mean value, 

especially for the case of coastal locations, a filtered mean value is also calculated: 

 
 

Filtered mean =  
∑ (1.5 ∗ 𝜎 − �̅�) < 𝑋 < (1.5 ∗ 𝜎 + �̅�)𝑖

𝑁
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With �̅� the unfiltered mean value, σ the standard deviation of the unfiltered data and N the number of 

values within ±1.5*σ. A revised pixel count (total minus masked pixels minus filtered pixels) is computed. A 

coefficient of variation (filtered standard deviation divided by the filtered mean, CV) is computed. Satellite 

retrievals with extreme variation between pixels in the defined box (CV > 0.15) are e xcluded.  

Next to the daily match-ups, complete CHL time series were extracted from the satellite products archive 

following the approach described above resulting in a filtered mean value for each day that data was 

available. These time series were extracted for each station in the in-situ data base. Next, monthly means 

were calculated for both the satellite and in situ data to avoid impact from irregular sampling when 

calculating the average and 90-percentile CHL concentrations for a yearly growing season which was 

defined as March to October inclusive for this comparison. Time series were considered adequate for 

validation if both satellite and in-situ data were available for each of the 8 months in the growing season.   

A linear regression is computed between log transformed in situ and satellite CHL observations and the 

following metrics were considered to assess the CHL: 

 The slope and the intercept of the regression line allow to see how the model is close to the 1:1 

line.  

 The coefficient of determination of the model (r2) measures the part of variability explained by the 

model. This coefficient is highly dependent of the dataset range.  

 
Additional calculated accuracy descriptors are: 

 The median absolute difference  𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝐶𝐻𝐿𝑠𝑎𝑡 − 𝐶𝐻𝐿𝑖𝑛 𝑠𝑖𝑡𝑢|)                 

 The median absolute percent difference (MAPD) indicates the median relative error in percentage. 

It is computed via 

𝑀𝐴𝑃𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (100 ×
|𝐶𝐻𝐿𝑠𝑎𝑡−𝐶𝐻𝐿𝑖𝑛 𝑠𝑖𝑡𝑢|

𝐶𝐻𝐿𝑖𝑛 𝑠𝑖𝑡𝑢
)    

Where CHLsat and CHLin situ are the satellite and in situ observations respectively.  

 

2.5.3. Match-up analysis: satellite vs in-situ observations  

 

The quality controlled and merged satellite-based chlorophyll-a observations are compared to in situ 

observations collected in national monitoring programs. Differences between in situ and satellite CHL 

observations are quantified based on the 3762 match ups between the in-situ data archive as described in 

section 2.5.1 and the satellite archive with the quality controlled and merged CHL products as described in 

section 2.4. Figure 2.21 shows the scatterplot of in-situ observations versus satellite observations with the 

data coloured per country. Considering all available data, the uncertainty is estimated with MAD res ulting 

in value is 1.89 µg/l which corresponds to a MAPD of 45.26%. The satellite products tend to overestimate 

CHL values when CHL is less than 1µg/l resulting in a slope of 0.64 and relative high scatter (r² = 0.60) 

around the 1:1 line for higher CHL values. Detailed validation results per country are provided in table 2.9. 

MAPD values range from 29.24% (Belgium) to 89.83% (UK CEFAS) showing big differences between 
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countries which can be explained by differences in water types at the monitoring stations, CHL estimation 

techniques (i.e. HPLC, spectrophotometry, fluorimetry) and proximity to the coast.  

 

Figure 2.21: Scatterplots of in situ and satellite CHL observations for the North Sea countries. The relationship between both 

data sets are described by the Median Absolute Difference (MAD), Median Absolute Percentage Error (MAPD).  The 

determination coefficient (r²) and the slope characterizes the regression. 

Table 2.9: Statistical results of the daily match up analysis per country.  

Country MAD (µg/l) MAPE (%) R² Slope Intercept nr Method 

BE 1.85 29.24 0.71 0.79 0.11 14 HPLC 

NL 2.47 39.90 0.75 0.78 0.06 216 HPLC 

DK 3.49 54.56 0.40 0.57 0.48 129 SPEC 

FR 1.45 35.48 0.49 0.60 0.32 148 SPEC 

UK CEFAS 2.34 89.83 0.41 0.61 0.41 121 HPLC 

UK SB 0.95 34.84 0.51 0.49 0.19 1059 FLUO 

SC 0.48 39.39 0.70 0.89 0.69 33 SPEC 

GE 2.27 50.78 0.17 0.20 0.60 237 HPLC + SPEC 

SE 0.78 58.85 0.16 0.44 0.00 317 FLUO 

NO 0.71 66.65 0.42 0.44 0.99 1464 SPEC 

Combo 0.69 45.26 0.60 0.64 0.12 3762 all 

 

While the daily match up analysis provides an accuracy assessment for singular CHL observations, 

eutrophication assessments are performed based on multi -temporal aggregates of CHL observations. In 

this section the capability of the satellite observations to capture the yearly CHL dynamics is assessed by 

calculating the mean and 90-percentile values over a CHL growing season defined as March-October incl. 

Differences between in situ and satellite CHL yearly mean CHL concentrations are quantified based on the 

956 match ups. Figure 2.262 shows the scatterplot of yearly averaged in-situ observations versus satellite 

observations with the data coloured per country. Considering all available data, the uncertainty is 

estimated with MAD resulting in value is 1.23 µg/l which corresponds to a MAPD of 35.19% which is an 
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improvement to the daily match up results. The linear regression results in a slope of 0.86 with data close 

to the 1:1 line (r² = 0.59). Detailed validation results per country are provided in table 2.10. MAPD values 

range from 12.97% (UK smart buoys) to 54.10% (Scotland).  For the 90-percentile products the uncertainty 

is estimated with MAD resulting in value is 2.32 µg/l which corresponds to a MAPD of 39.05 %. The linear 

regression results in a slope of 0.79 with data close to the 1:1 line (r² = 0.53) (Figure 2.23, Table 2.11). We 

observe an increase in scatter (higher r² values) and MAPD values when comparing the CHL-P90 matchups 

with the mean indicating that the statistical variable ‘mean’ provides more stable results compared to the 

CHL-P90 which is more sensitive to sampling frequency (Van der Zande et al., 2011) . 

 

Figure 2.22: Scatterplots of yearly mean CHL concentrations based on in situ and satellite CHL observations for the North Sea 

countries. The relationship between both data sets are described by the Median Absolute Difference (MAD), Median Absolute 

Percentage Error (MAPD).  The determination coefficient (r²) and the slope characterizes the regression. 

Table 2.10 Statistical results of the match up analysis of yearly mean CHL estimates per country.  

Country MAD (µg/l) MAPE (%) R² Slope Intercept nr Method 

BE **** *** *** *** *** *** *** 

NL 1.83 27.98 0.84 0.88 0.01 202 HPLC 

DK 3.03 53.78 0.41 0.59 0.59 133 SPEC 

FR 1.13 22.98 0.58 0.78 0.20 113 SPEC 

UK CEFAS 1.11 36.40 0.34 0.62 0.35 211 HPLC 

UK SB 0.53 12.97 0.70 0.61 0.14 17 FLUO 

SC 0.83 54.10 0.33 0.63 1.65 10 SPEC 

GE 3.23 39.56 0.16 0.30 0.61 55 HPLC + SPEC 

SE 0.90 43.05 0.19 0.72 0.04 216 FLUO 

NO **** **** **** *** *** 2 SPEC 

Combo 1.23 35.19 0.59 0.86 0.12 956 *** 
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Figure 2.23: Scatterplots of yearly 90-percentile CHL concentrations based on in situ and satellite CHL observations for the 

North Sea countries. The relationship between both data sets are described by the Mean Absolute Difference (MAD), Mean 

Absolute Percentage Error (MAPD).  The determination coefficient (r²) and the slope characterizes the regression. 

Table 2.11: Statistical results of the match up analysis of yearly 90-percentile (P90) CHL estimates per country.  

Country MAE (µg/l) MAPE (%) R² Slope Intercept nr Method 

BE **** *** *** *** *** *** *** 

NL 4.06 34.50 0.77 0.87 -0.01 202 HPLC 

DK 4.87 49.74 0.29 0.47 0.65 132 SPEC 

FR 2.47 29.45 0.50 0.77 0.26 113 SPEC 

UK CEFAS 1.97 36.45 0.30 0.54 0.39 143 HPLC 

UK SB 1.28 20.95 0.67 0.53 0.20 17 FLUO 

SC 1.11 47.99 0.20 0.63 2.39 10 SPEC 

GE 6.28 42.14 0.08 0.22 0.81 55 HPLC + SPEC 

SE 1.69 48.30 0.12 0.54 0.20 216 FLUO 

NO **** **** **** *** *** 2 SPEC 

Combo 2.32 39.05 0.53 0.79 0.16 955 *** 

 

Figure 2.24 shows an example of a yearly mean and P90 CHL map for the growing season (March-Oct incl.) 

for three years (2000, 2007, 2016, other years not shown) with an overlay in situ station markers showing 

the in situ CHL values with the same color scheme as the satellite data. Each of these markers represents a 

point in the scatterplots presented in figure 2.22 and 2.23. This representation shows the ability of the 

satellite observations to capture the spatial CHL patterns which are not captured by the in -situ 
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observations. The national monitoring zones are overlaid in black providing an opportunity to assess the 

ability of an in-situ station to capture the CHL variability in a specific zone.  

 
 

Figure 2.24: Mean and 90-percentile map of the blended and quality controlled CHL product for the growing season (March-

Oct incl.) for the years 2000, 2007 and 2016 with an overlay in situ station markers showing the in situ CHL values with the 

same color scheme as the satellite data providing a spatial interpretation of the intensity of the algal blooms in the North Sea. 

The national monitoring zones are overlaid in black 
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CHL time series were extracted for the national monitoring stations for the period 1998-2017 showing the 

ability of the satellite data to capture the temporal CHL dynamics. These data were provided to all partners 

to enable a direct assessment of the quality of the satellite observations for their specific stations. 

Examples of such time series are demonstrated in figure 2.25 showing a 90-percentile map of chlorophyll a 

for the growing season (March-Oct incl.) of 2003 providing a spatial interpretation of the intensity of the 

algal blooms in the North Sea. Additionally, a direct comparison of chlorophyll -a time series is provided for 

the national monitoring stations Stonehaven (Scotland), Rottumerplaat (the Netherlands), 330 (Belgium) 

and Boulogne (France) for the year 2003 showing the ability of the satellite data to capture the temporal 

chlorophyll a dynamics. For the time series of satellite data we extracted a 3 x 3 macro-pixel with 1 x 1 km 

pixels of which the center pixel contains the monitoring station location. The resulting time series are 

presented in monthly bins as in situ data is mostly collected on a monthly basis in these stations. The 

satellite data is presented as boxplots to demonstrate the increased availability of satellite data compared 

to in situ sampling, i.e. 20-50 observations per growing season depending on the location, cloud cover and 

water conditions.  

 

Figure 2.25: Map of the 90th percentile of the blended and quality-controlled CHL product for the growing season (March-Oct 

incl.) of 2003 providing a spatial interpretation of the intensity of the algal blooms in the North Sea. Additionally, a direct 

comparison of CHL time series, presented as boxplots, is provided for the national monitoring stations Stonehaven (Scotland), 

Rottumerplaat (The Netherlands), 330 (Belgium) and Boulogne (France) for the year 2003 showing the ability of the satellite 

data to capture the temporal CHL dynamics. Black dots represent the mean monthly in-situ CHL concentration, the boxplots 

show the monthly satellite-based CHL concentration with box extending from the lower to upper quartile values of the data, 

with a line at the median and the whiskers showing the 10- and 90-percentiles. 

 



 
 
 

45 
 

 

2.6. Conclusions 

CHL concentration is a critical parameter for the users of ocean color satellite images in the North Sea. 

Satellite data from ocean color sensors (i.e. SeaWiFS, MODIS, MERIS, VIIRS, Sentinel -3) can provide 

spatially coherent data on CHL concentrations using CHL retrieval algorithms such as with blue/green-ratio 

algorithms (e.g. OC4, OC5), red-NIR algorithms (e.g. Gons) or Neural Networks (e.g. MEGS, FUB). However, 

because of the optical complexity of coastal waters, retrieving accurate CHL estimates is still challenging. 

The CHL algorithms are often regional or only apply to a certain water type (e.g. clear waters, turbid 

waters, CDOM rich waters) making it difficult to apply them to a region such as the North Sea as water 

properties are so variable spatially that only one algorithm is generally not adapted to the whole study 

area. To fill this gap, we proposed a methodology to determine the reflectance conditions for which these 

algorithms can deliver an accurate CHL estimate in complex optical conditions as found in coastal waters. 

Results show that by applying the quality control per algorithm, performances of the selected algorithms 

are improved and almost reach the standards expected in open ocean (i.e. 30% error).  

Next, the best combination of quality controlled CHL algorithms is determined to produce a quality 

controlled multi-algorithm satellite CHL product based on best suited algorithm/water type combination. 

The suitability of the blended CHL product for eutrophication assessment was evaluated by a comparison 

analysis with in situ datasets for all assessment areas in the greater North Sea. After combining multiple 

algorithms, a daily match up analysis with in situ observations resulted in a median error of 45.26%. 

Eutrophication assessments for the MSFD are performed on multi -temporal composites of these daily CHL 

products, i.e. mean or P90 over a growing season. A validation of the yearly mean and P90 CHL products 

yielded a median error of 35.19% and 39.05% respectively showing a good general agreement between in-

situ and satellite observations.  

A more detailed intercomparison between in-situ and satellite CHL observations per country showed 

differences which can be explained by: 

 differences in water types at the monitoring stations. While there is a selection of an optimal CHL 

algorithm per water type, the complex condition of coastal waters generally results in less accurate 

CHL estimates compared to clear waters. It is especially difficult to quarantee high quality CHL 

products in CDOM rich waters (e.g. Kattegat, German Wadden Sea). 

 In-situ CHL estimation techniques.  Ocean colour algorithms are generally calibrated using HPLC in 

situ measurements. In this study, the in situ data set used for validation consisted of CHL est imates 

obtained through different techniques, i.e. HPLC, spectrophotometry, fluorimetry. Thus including 

the inconherency between these methods into the validation results. Additionally, the monitoring 

frequency of both satellite and in situ observations can play an important role when comparing 

multi-temporal CHL products (e.g. mean, P90) 
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 proximity to the coast. In coastal waters, CHL concentration might be extremely high (Smith et al., 

2018) and water leaving reflectance canaffected by non algal particul ates (high turbidity) and/or 

CDOM by riverine output which varies independently of phytoplankton biomass. This results in 

very complex optical conditions where spectral ratio algorithms generally fail pushing the need for 

more complex approaches such as neural networks. Often, satellite product providers apply a 

buffer flag around land pixels to exclude these difficult conditions.  

 

The quality control and merging procedure was tested on Sentinel -3 OLCI images. Although more 

validation results are still needed for the OLCI sensors, results show good agreements with the applications 

on MERIS images which suggest that applied the presented methodology will help to accurately estimate 

CHL in the North Sea for the Sentinel-3 era which will continue up to 2036.  
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3. Evaluation of coherent satellite-based chlorophyll a product for eutrophication 
assessment 

3.1. Introduction 

The Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) are currently 

the most important drivers for monitoring the coastal and offshore waters in Europe with the objective of 

reaching a ‘good environmental status’. Human-induced eutrophication is one of the criteria for assessing 

the extent to which good environmental status is being achieved. The eutrophication status is established 

by monitoring the CHL concentration as it is a proxy of phytoplankton biomass. More specifically, the 

indicator of choice is a multi-temporal statistical descriptor such as the mean or 90 percentile (P90) of CHL 

over the phytoplankton growing season for a period of 6 years expressed in µg/l. While a growing season 

may have different definitions depending on the country applying them, in this exercise we use the Dutch 

definition as March-September incl. With in-situ data acquisition still considered as the main monitoring 

tool, in this section we investigate the impact of use of satellite data using different approaches on 

eutrophication assessments: 

 satellite data vs in-situ data for coherent CHL assessment 

 traditional vs newly proposed (WP1) assessment levels (threshold values in MSFD terminology) 

 traditional vs newly proposed (WP1) assessment regions 

 

In this case study we focus on the Dutch part of the North Sea due to the availability of sufficient in -situ 

and satellite observations. We state that the assessment results presented here are NOT proposed as ‘the 

new OSPAR assessment for 2022’. We combined available models and satellite algorithms for the first time 

to demonstrate a novel approach for coherent assessments to improve/fine -tune all components before 

actual implementation. The assessment provided here should reflect trends in eutrophication. To minimize 

random effects of observation timing, location and method of sampling we focus on 6-year means with 

CHL time series at fixed monitoring sites. To enhance the assessment, we use the full archive of quality 

controlled and merged satellite-based CHL products taking advantage of their high spatial and temporal 

resolution.  
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3.2. Satellite data and in-situ data for coherent CHL assessment 

Ecological assessments for the Marine Strategy Framework Directive (MSFD) require monitoring data of 

chlorophyll-a to assess the eutrophication status of Dutch marine waters. Traditionally, such monitoring 

data have been acquired by bi-weekly to monthly monitoring cruises by ship (Dutch national monitoring 

program MWTL). The use of satellite data for monitoring CHL in marine waters for assessments could 

enable more reliable assessments at lower costs than traditional monitoring by ships. In the section 3.1 we 

present a quality controlled merged satellite-based CHL product and validation results have shown that 

this type of observations can provide data on CHL with an appropriate accuracy and precision. While the 

satellite data could not reproduce individual in-situ observations exactly, because of the higher resolution 

in space and time, the estimates of growing season means would still be more accurate than estimates 

based on monthly monitoring data at selected locations.  

 

Including high spatial resolution data into an eutrophication assessment requires different data processing 

and results may differ from the traditional assessments based on in-situ data. The objective of this case 

study is to evaluate how different data sources (in-situ vs satellite data) and data processing methods 

affect the assessment results. In this section we start from the same method that has been used in the 

most recent OSPAR assessment for Dutch marine waters for 2006 – 2014 (Baretta-Bekker, 2016) but we 

focus on the period 2006-2011. We have chosen this period because MSFD assessments are carried out at 

a 6-year frequency, so we evaluate assessment results for a six -year period. Furthermore, this period 

overlaps with the period used for the 2006-2014 OSPAR assessment and for this period MERIS satellite 

data are available. Satellite data from MERIS can provide more accurate chlorophyll -a estimates than 

MODIS data in turbid coastal waters. We perform the assessment at 3 spatial aggregation methods:  

 Assessment per individual MWTL location 

 Assessment per assessment area, as area means 

 Assessment per grid cell of 1 x 1 km in the satellite data, with spatially variable assessment 

thresholds 

 

OSPAR assessments use 4 indicators: nutrients, chlorophyll, Phaeocystis and oxygen. This study focusses on 

possible changes in assessment results due to a change in assessment method, by including satellite data. 

Satellite data can only provide information on the chlorophyll -a indicator. Therefore, we focus only on 

possible changes in assessment results for the chlorophyll indicator. In the latest OSPAR assessment 

oxygen was not a problem in any of the Dutch assessment areas. Phaeocystis is being reconsidered as 

indicator. It may be excluded from future assessments for the North Sea. We exclude these indicators from 

the present study, since we don’t expect them to affect future eutrophication assessments for the North 

Sea. The assessment of nutrients is not affected by the use of satellite data, but the overall assessment 

result is affected by nutrients.  

 

In this study we focus on the marine assessment areas: Coastal waters, Southern Bight offshore, Oyster 

grounds and Dogger Bank. The estuarine assessment areas: Wadden Sea, Western Scheldt and Ems-Dollard 

are disregarded in this study. In these shallow turbid waters, with many intertidal areas, satellite data of 

traditional ocean color satellites are relatively unreliable. The Sentinel -2 satellite for inland waters has a 
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higher spatial resolution and therefore we expect this satellite to provide more useful d ata for the deeper 

parts (gullies). In shallow areas where the sediment reflects sunlight optical satellite data (water colour) 

cannot be used to retrieve chlorophyll-a concentrations.  

3.2.1. Data description 

Chlorophyll-a concentrations of 2006 – 2011 from the MWTL monitoring programme by Rijkswaterstaat 

have been used as in-situ data. Only the locations that are used for the OSPAR assessment have been used, 

for the marine assessment areas (see Table 3.1 and Figure 3.1). These data have been sampled at 3 m 

below the surface and samples were analyzed in the laboratory with HPLC to determine chlorophyll -a 

concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

CHL time series were extracted from the quality controlled multi -algorithm products archive (section 2.4) 

for each of the MWTL stations as described in table 3.1 using the method described in section 2.5.2. to 

enable a direct comparison. Additionally, CHL time series were created for each of the Dutch marine areas 

(i.e. Coastal waters, Southern Bight offshore, Oyster grounds and Dogger Bank) by calculating the mean 

CHL for each region per satellite image.  

3.2.2. OSPAR assessment levels and areas 

For the OSPAR assessments in Dutch coastal waters 7 assessment areas are distinguished (Figure 3.1). The 

marine areas: “Coastal waters”, “Southern Bight offshore”, “Oystergrounds” and “Doggerbank” are in 

scope for this study. Traditionally the area mean chlorophyll concentrations are estimated from the MWTL 

locations (black dots in Figure 3.1) within these assessment areas. The assessment level for the 90-

percentile chlorophyll-a concentrations are twice as high as the assessment levels for growing season 

means. The 90-percentile of chlorophyll-a concentrations for the assessment is also estimated as twice the 

*Since there are no chlorophyll data available for Schouwen 10 km in the years 
2006 – 2011, we have omitted this station from this study 

Table 3.1: Overview of MWTL monitoring locations per assessment area that 

have been used for the latest OSPAR assessment 
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mean of observed chlorophyll-a concentrations. The assessment of 90-percentiles of chlorophyll-a 

concentrations is actually redundant in the present assessment method. Table 3.2 summarizes the 

assessment levels for season mean DIN, DIP and chlorophyll concentrations in the 4 marine areas that are 

in scope for this study. The assessment level for DIN is salinity dependent. The number in table 3.2 is the 

assessment level at a salinity of 30 psu. 

 

 

Fig 3.1: Assessment areas in the latest OSPAR assessment. Black closed circles represent MWTL monitoring locations used for 

the assessment 

Table 3.2: Assessment levels for growing season mean CHL concentrations per assessment area. 

 

Next, monthly means were calculated for both the satellite and in situ data to avoid impact from irregular 

sampling when calculating the average and 90-percentile CHL concentrations for a yearly growing season 

which was defined as March to October inclusive for this comparison. Time series were considered 

adequate for validation if both satellite and in-situ data were available for each of the 8 months in the 

growing season.   
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3.2.3. OSPAR assessment levels and areas 

The most recent application of the OSPAR Comprehensive Procedure to Dutch marine waters is from 2016 

(Baretta-Bekker, 2016). In this report in-situ data from the years 2006 – 2014 were used for the 

assessment. Figure 3.2 shows the overall outcome of the assessment. The Oyster Grounds and Dogger 

Bank were non-problem areas, while all other subareas were classified as problem areas. In Figure 3.2 the 

assessment results are shown for per indicator: DIN/DIP, CHL, the nuisance phytoplankton indicator 

species (i.e. Phaeocystis) and oxygen. Assessment levels for CHL are only exceeded in the assessment area 

Wadden Sea. The Southern Bight offshore area is a problem area based on the n umber of cells/l of 

Phaeocystis only. In the assessment areas: Coastal Waters, Wadden Sea, Western Scheldt, and Ems-Dollard 

the assessment levels of several indicators (nutrients and Phaeocystis, and in some cases chlorophyll) were 

exceeded. Oxygen concentrations in are above the minimum assessment levels in all areas. If the indicator 

Phaeocystis will not be used in the future then coastal waters will only be assessed as problem area 

because of excess nutrient concentrations. 

 

 
 

Fig 3.2: Overall OSPAR assessment results for eutrophication for the years 2006-2014 
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Fig 3.3. Assessment results for 2006-2011 for A) DIN and DIP, B) CHL, C) Phaeocystis and D) oxygen 
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3.2.4. Data pre-processing options 

Statistics (either mean, median or 90 percentile) per assessment area over a series of years can be 

calculated in several ways. Aggregation of observations (either in-situ or from satellites) in space and time 

can be done step-wise at several spatial and temporal aggregation levels. For aggregation in space there 

are two aggregation levels: 

 Per location (either MWTL or 1 x 1 km grid cell of satellite data) 

 Per assessment area. 

 

For aggregation in time there are 4 aggregation levels: 

 Individual observation 

 Per month 

 Per season (either winter or growing season) per year 

 Per season per period of several years. 

 

In the most recent OSPAR assessment the following steps have been taken: 

 First season means per year have been calculated per assessment area, by averaging over all 

monitoring locations in that area. 

 Next the area mean was calculated over the years of the assessment period. 

 The 90-percentile for chlorophyll-a was calculated as twice the growing season mean. In 

historic MWTL data the 90-percentile was shown to be generally circa two times the season 

mean for chlorophyll-a (van den Berg, 2004). 

 

In this study we prefer to first aggregate over time per location and next per assessment area because the 

definition of assessment areas is considered to be revised by OSPAR. Also, the satellite data have a higher 

spatial resolution, so the effect of this enhanced spatial resolution is a relevant aspect in this pilot 

assessment study. For comparison we also aggregate the data in the same way as the most recent OSPAR 

assessment. More specifically we use the following step-wise aggregation in time of the data per location 

for this study: 

 Mean: 

– First monthly average per year (to correct for higher sampling frequency during 

spring bloom in some years), 

– then growing season mean per year, 

– mean of growing season means of 2006 – 2011. 

 

 Median: 

– median of all chlorophyll observations during the months March through September of 

2006 – 2011 

 

 90-percentile: 

– 90-percentile of all chlorophyll observations during the months March through September 

of 2006 – 2011 
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Satellite data are available for the growing seasons of 1998 – 2017 from the quality-controlled merged CHL 

archive (section 2).  We will focus on the period 2006-2011 due to the availability of MERIS data for which 

we are able to generate the red-NIR based CHL product optimized for turbid eutrophic waters which are 

found in the coastal area of the Dutch waters.  

 
3.3. Assessment results based on growing season means 

3.3.1. Assessment per MWTL location 

Table 3.3 shows the mean CHL concentrations for the period 2006-2011 based on both in situ data and the 

quality-controlled merged CHL data for all MWTL station with the current assessment level at each MWTL 

station. The satellite CHL products give the same assessment results as in-situ data for all MWTL locations, 

except for Terschelling 4km where the satellite data observes higher CHL mean values. A color code is 

appointed to the assessments per stations as an arbitrary indicator based on the ratio between the 

growing season mean and assessment level. The assessment is considered: ‘non -problem’ for a ratio 

smaller than 0.9, ‘potential problem’ if the ratio is between 0.9 and 1.1 and ‘problem’ if the ratio is bigger 

than 1.1.  

 
Table 3.3: Comparison of the CHL growing season means over 2006-2011 from several data sources, with the current 

assessment level at each MWTL station. A color code is appointed to data source as an arbitrary indicator based on the ratio 

between the growing season mean and assessment level.  
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Figure 3.4 shows the scatterplot of in-situ versus satellite mean CHL concentrations for the period 2006-

2011 with the uncertainty estimated with MAD of 0.36µg/l corresponding to an MAPD of 12.68%. The 

linear regression results in a slope of 1.02 with data close to the 1:1 line (r² = 0.84).  

 

Figure 3.4: Scatterplot of mean CHL concentrations for the period 2006-2011 based on in situ and satellite CHL observations 

for Dutch waters. The relationship between both data sets are described by the Mean Absolute Difference (MAD), Mean 

Absolute Percentage Error (MAPD).  The determination coefficient (r²) and the slope characterizes the regression. 

3.3.2. Assessment per assessment area 

For the assessment per area we aggregated the satellite CHL data in two different ways following the 

protocol described in section 3.3.1: 

 Only consider the satellite CHL observations at the MWTL locations to minimize the 

differences with the in-situ data 

 Consider all satellite CHL observations per assessment area, i.e. all pixels located inside the 

assessment area 

 

When results are averaged per assessment area only considering the observations at the MWTL locations, 

the satellite products give similar assessment results as the assessment with in -situ (Table 3.4). When 

considering all satellite CHL observations at full resolution (Table 3.5), the estimated area CHL mean is for 

most areas reasonably close to the mean based on MWTL locations only. This agreement can be explained 

by the fact that the areas are relatively homogeneous with respect to water quality indicators. Only in the 

assessment area “Coastal waters” the estimated area mean CHL concentrations based on MWTL locations 

only (7.1 µg/l) is 70% higher as the mean based on all 1x1 km grid cells within the assessment area (4.16 

µg/l). This illustrates the bias introduced by sampling a limited number of locations in an area with strong 

spatial gradients (Figure 2.12). In such areas the higher spatial and temporal resolution provided by 

satellite observations can provide a more representative assessment, less affected by random variations 

caused by undersampling critical periods (e.g. spring algal bloom). This is especially valuable in areas 

characterized with high variability in space and time such as coastal system.  
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Table 3.5:  Comparison of the CHL growing season means over 2006-2011 from several data sources, with the current 

assessment level at each MWTL station. The CHL observations are aggregated by grouping the data for all MWTL stations per 

assessment area for the in-situ data. All satellite CHL observations per assessment area are considered, i.e. all pixels located 

inside the assessment area. A color code is appointed to data source as an arbitrary indicator based on the ratio between the 

growing season mean and assessment level. 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

mean 2006-2011 mean 2006-2011

Assessment Area Assessment level in situ (µg/l) EO (µg/l)

Coastal waters 7.5 µg/l 7.1 7.71

Doggerbank 2.25 µg/l 0.9 0.85

Oystergrounds 2.25 µg/l 0.8 0.84

Southern Bight 2.25 µg/l 2.2 2.24

mean 2006-2011 mean 2006-2011

Assessment Area Assessment level in situ (µg/l) EO (µg/l)

Coastal waters 7.5 µg/l 7.1 4.16

Doggerbank 2.25 µg/l 0.9 0.76

Oystergrounds 2.25 µg/l 0.8 1.04

Southern Bight 2.25 µg/l 2.2 2.16

Table 3.4:  Comparison of the CHL growing season means over 2006-2011 from several data sources, with the current 

assessment level at each MWTL station. The CHL observations are aggregated by grouping the data for all MWTL stations 

per assessment area, this for both the in situ and satellite data. A color code is appointed to data source as an arbitrary 

indicator based on the ratio between the growing season mean and assessment level. 
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Figure 3.5. Spatial distribution of 6-year growing season mean CHL concentrations in the satellite data. Black lines represent 

the assessment area boundaries and white numbers in the assessment areas represent the area mean. 

 

3.3.3. Assessment per grid cell of 1x1 km with spatially variable assessment thresholds 

Assessment levels in use for eutrophication are presently incoherent between different countries, between 

MSFD and WFD and between different eutrophication indicators. Results from JMP -EUNOSAT Activity 1 

proposed a set of coherent assessment levels for eutrophication in the North Sea based on a step -wise 

approach. Assessment levels for eutrophication in the North Sea have been defined as a justified area -

specific percentage deviation from natural reference conditions not exceeding 50%. Therefore, we first 

chose a common definition of "natural reference conditions" as the year 1900. The corresponding nutrient 

loads were calculated with the European catchment model E-HYPE by SMHI. Corresponding nutrient 

concentrations under natural reference conditions in the North Sea were calculated with the DFLOW-FM 

model for the North Sea by Deltares. Next, the corresponding CHL concentrations were calculated with two 

modelling approaches: a statistical GAM model and the deterministic model BLOOM. This approach 

resulted in spatially variable CHL threshold map as presented in figure 3.6 (right) for the North Sea region 

with a spatial resolution of 1x1km corresponding to the grid used for the satellite data.   
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Figure 3.6 (left) Assessment levels for the 90-percentile CHL concentration during the growing season currently used in 

eutrophication assessment for MSFD showing incoherency between assessment areas. (right) Spatially coherent assessment 

levels for the mean CHL concentration proposed by Activity 1 with a spatial resolution of 1x1km corresponding to the grid 

used for the satellite data.  

 

A pixel by pixel eutrophication assessment was performed by directly comparing the satellite  data with the 

assessment thresholds. A color code is appointed to the pixel-wise assessments as an arbitrary indicator 

based on the ratio between the growing season mean for the period 2006-2011 and assessment level. The 

assessment is considered: ‘non-problem’ for a ratio smaller than 0.9, ‘potential problem’ if the ratio is 

between 0.9 and 1.1 and ‘problem’ if the ratio is bigger than 1.1 (Figure  3.7).  
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Figure 3.7: Classification map of the mean CHL product (2006-2011) for the Dutch waters with a color code appointed as an 

arbitrary indicator based on the ratio between the growing season CHL mean and assessment level. Circle markers show the 

assessment based on in-situ data. The national monitoring zones are overlaid in black 

 

Table 3.6 shows the mean CHL concentrations for the period 2006-2011 based on both in situ data and the 

quality-controlled merged CHL data for all MWTL station with the new assessment level at each MWTL 

station as proposed by Activity 1. The satel lite CHL products give the same assessment results as in-situ 

data for all MWTL locations, except for Goeree 2km and Rottumerplaat 50km. Station Goeree 2km shows 

higher mean CHL concentrations in the satellite data compared to the in-situ data resulting in the different 

assessment. For station Rottumerplaat 50km the mean CHL concentrations are more comparable between 

satellite and in-situ data and are both below the assessment level. However, the satellite observations  

hoover around the threshold value in that pixel.  
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Table 3.6. Comparison of the CHL growing season means over 2006-2011 from several data sources, with the new assessment 

levels at each MWTL station. A color code is appointed to data source as an arbitrary indicator based on the ratio between the 

growing season mean and assessment level.  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 

 

Table 3.6 shows the traffic light color system of the OSPAR Common Procedure: problem area (red), non-

problem area (green) and potential problem area (amber). Having two (or three) classes is quite limiting in 

terms of assessing gradual improvement of the GES of an assessment area. With a satellite-based 

classification CHL product as presented in figure 3.5 it is possible to determine the surface of an 

assessment zone that is exceeding the assessment threshold, both fixed or variable (Annex I, Figure 3.4). 

Figure 3.6 (left) shows the evolution in time of the percentage surface of the Dutch assessment areas 

which falls into the category of ‘problem area’ (i.e. red zone in Figure 3.5) as an objective indicator of 

eutrophication based on yearly composites compared to the traditional assessment levels. It shows that 

when using the standard thresholds, the ‘Southern Bight’ area has the highest portion of its surface above 

the assessment level (i.e. 2.25µg/l). It also shows high variability through the years with values ranging 

from 5.95% (2000) to 84.15% (2013) which is explained by the fact that the observed yearly mean CHL 

values are very close to the assessment level causing this erratic variation. The ‘Coastal waters ’ area has 

the second highest percentage surface eutrophied ranging from 1.41% (2000) to 19.60% (2008). It can be 

considered illogical that the eutrophication problem increases with the distance to the coast between 

these two areas as the ‘Coastal waters’ are affected more intensely by riverine input of nutrients. This can 

be explained by the different in assessment levels between the two areas: 7.5µg/l for the ‘Coastal waters’ 

and 2.25µg/l for the ‘Southern Bight’ where only a limited band of the ‘Coastal waters’ exceeds this level 

(Figure 3.3) while the entire surface of the ‘Southern Bight’ has CHL estimates close to the threshold. This 

problem can be partially solved by using spatially variable assessment levels (Figure 3.6 right) resulting in a 

closer match between the areas ‘Coastal waters’ and ‘Southern Bight’. Both areas show similar temporal 

mean 2006-2011 mean 2006-2011

Assessment Area Station Assessment level (µg/l) in situ (µg/l) EO (µg/l)

Coastal waters Goeree 2km 16.52 10.8 16.54

Coastal waters Goeree 6km 12.38 11.2 12.35

Coastal waters Noordwijk 10km 5.62 6.8 7.55

Coastal waters Noordwijk 2km 6.22 9.9 11.23

Coastal waters Noordwijk 20km 4.40 5.2 5.05

Coastal waters Rottumerplaat 3km 7.15 11.3 8

Coastal waters Rottumerplaat 50km 2.71 2.6 2.29

Coastal waters Rottumerplaat 70km 2.33 1.6 2

Coastal waters Terschelling 10km 3.86 4.1 3.93

Coastal waters Terschelling 4km 4.59 6.1 7.87

Coastal waters Walcheren 2km 4.82 12.4 10.25

Coastal waters Walcheren 20km 3.62 7.3 5.44

Doggerbank Terschelling 235km 1.79 0.9 0.85

Oystergrounds Terschelling 100km 1.84 0.9 0.99

Oystergrounds Terschelling 135km 1.78 0.8 0.83

Oystergrounds Terschelling 175km 1.79 0.6 0.7

Southern Bight Noordwijk 70 km 1.95 2.1 1.97

Southern Bight Walcheren 70km 1.93 2.2 2.5
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eutrophication patterns ranging from 5.76% (2000) to 79.13% (2008) for the ‘Coastal waters’ and from 

19.68% (2000) to 96.10% (2013) for the ‘Southern Bight’.  

 

 

 

 

 

 

 

 

Figure 3.6. The percentage surface of the Dutch assessment areas of which the yearly mean CHL concentrations exceed the 

traditional (left) or spatially variable (right) assessment levels.  

3.3.4. New assessment areas    

Next to spatially variable assessments levels, Activity 1 also proposed new assessment areas to replace the 

current national assessment areas which do not reflect national borders but cross -border areas that are 

determined by the characteristics of the North Sea ecosystem that are relevant f or the assessment of 

eutrophication. This resulted in assessment areas that share similar environmental conditions within one 

area which can be distinguished from the conditions in other areas (Annex II). The need for new 

assessment areas is demonstrated in section 3.3.2 where the Dutch national assessment area ‘Coastal 

waters’ shows a strong gradient in CHL concentrations perpendicular to the coast resulting in differences in 

eutrophication assessments when using in-situ observations compared to satellite observations.  Figure 3.7 

shows these new assessment areas compared to the national borders.  

NEW THRESHOLDS STANDARD THRESHOLDS 
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Figure 3.7: Definition of assessment areas based on duration of stratification, mean surface salinity and depth. 

Similar to section 3.3.2, we aggregated the satellite CHL data per new assessment area, i.e. all pixels 

located inside the new assessment areas to obtain a mean CHL concentration for the growing season 

March-September for the period 2006-2011. Additionally, we calculated the mean assessment level from 

the spatially variable CHL threshold map enabling a direct assessment by determining the ratio between 

the mean CHL concentration and mean assessment level per new assessment area. A color code is 

appointed to the pixel-wise assessments as an arbitrary indicator based on the ratio between the growing 

season mean for the period 2006-2011 and assessment level. The assessment is considered: ‘non-problem’ 

for a ratio smaller than 0.9, ‘potential problem’ if the ratio is between 0.9 and 1.1 and ‘problem’ if the ratio 

is bigger than 1.1. Table 3.7 provides the eutrophication assessment for the period 2006-2011 based on 

satellite observations, the new spatially variable assessment levels and new assessment areas. The same 

information is spatially represented in a map product in figure 3.8.  
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Table 3.7 Comparison of the CHL growing season means over 2006-2011 from satellite observations, with the average 

assessment levels per new assessment region. A color code is appointed to data source as an arbitrary indicator based on the 

ratio between the growing season mean and assessment level.  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

zone CHL_mean (µg/l) average threshold (µg/l)

# 1:Atlantic 0.84 2.59

# 2:Atlantic Perm. Strat. (no data) -1.00 -1.00

# 3:Atlantic Seas. Start. 0.68 1.49

# 4:Atlantic Seas. Start 0.88 1.75

# 5:Channel Fr 1.66 2.05

# 6:Channel UK 1.36 1.78

# 7:Coastal No 1.86 2.23

# 8:Coastal IR 1.66 2.40

# 9:Coastal UK south 1.43 2.11

# 10:Coastal UK North 1.69 2.05

# 11:Coastal BE 9.36 6.40

# 12:Coastal NL 9.66 7.60

# 13:Coastal GE 7.88 8.69

# 14:Coastal DK 6.50 4.71

# 15:Coastal Offshore GE 2.79 2.82

# 16:Coastal Offshore GE 2.66 2.79

# 17:Doggersbank 1.03 1.76

# 18:Doggersbank 0.76 1.82

# 19:Doggersbank 0.76 1.82

# 20:Doggersbank 0.87 1.80

# 21:Estuary Fr 9.39 11.56

# 22:Estuary Gironde (no data) -1.00 -1.00

# 23:Estuary UK 7.07 5.80

# 24:Interm. Strat. IR 1.00 1.45

# 25:Interm. Strat. UK 1.32 1.95

# 26:Kattegat Coastal 3.60 1.87

# 27:Kattegat Coastal 4.35 1.99

# 28:Kattegat Deep 1.36 2.08

# 29:Kattegat Deep 1.67 2.07

# 30:Central NS (central) 0.84 2.07

# 31:Central NS 0.79 1.82

# 32:Central NS NL 1.04 1.87

# 33:Central NS GE 1.51 2.12

# 34:Central NS 0.93 1.96

# 35:Central NS -1.00 -1.00

# 36:Central NS 0.92 1.99

# 37:Central NS 0.77 1.82

# 38:Central NS 0.71 1.83

# 39:Norwegian Trench 1.27 2.24

# 40:Skagerrak 0.95 2.17

# 41:Skagerrak 2.12 2.23

# 42:Southern North Sea GE 2.66 3.16

# 43:Southern North Sea FR 4.33 2.36

# 44:Southern North Sea UK 2.76 2.17

# 45:Southern North Sea BE 4.54 3.13

# 46:Southern North Sea NL 2.80 2.54
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Figure 3.8: Classification map of the mean satellite-based CHL product (2006-2011) for the North Sea region with a color code 

appointed as an arbitrary indicator based on the ratio between the growing season CHL mean and mean assessment level per 

new assessment region.  
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3.4. Conclusions 

 
Including high spatial resolution data into an eutrophication assessment require s different data processing 

and results may differ from the traditional assessments based on in-situ data. The objective of this Dutch 

case study was to evaluate how different data sources (in-situ vs satellite data) and data processing 

methods affect the assessment results.  

 

Assessment using traditional assessment levels with satellite data gave similar results as in -situ data in 

Dutch waters for assessment at MWTL locations only which is to be expected from the strong correlation 

between in-situ and satellite 6-year mean CHL concentrations per MWTL station. Still, this approach would 

completely negate the advantage provide by satellite sensors in terms of spatial resolution. When 

considering all satellite CHL observations at full resolution, the estimated area CHL mean is for most areas 

reasonably close to the mean based on MWTL locations only when the areas are relatively homogeneous 

with respect to water quality indicators. Only in the assessment area “Coastal waters” the estimated area 

mean CHL concentrations based on MWTL locations only is 70% higher as the mean based on all 1x1 km 

grid cells within the assessment area. In areas with strong spatial gradients, the assessment results are very 

sensitive to the area boundaries and the choice of in-situ monitoring locations. The assessment levels for 

dissolved inorganic nitrogen (DIN) for example are corrected for salinity to take the effect of the cross -

shore gradient into account. A similar approach for chlorophyll -a concentrations would make the 

assessments more robust.  

A solution for this problem is the use of spatially variable CHL assessment levels with a spatial resolution of 

1x1km corresponding to the grid used for the satellite data. This enables a pixel by pixel eutrophication 

assessment by directly comparing the satellite data with the assessment levels. In Activity 1 new coherent 

assessment levels and assessment areas were proposed as used here in the Dutch case study. Spatially 

variable assessment levels instead of fixed levels result in a more consistent relative exceedance of the 

assessment levels throughout the assessment area. Consequently, the result is less dependent on the 

definition of assessment areas. Such spatially varying assessment levels allows for making better use of the 

full spatial resolution that satellite data can provide. Another possibility is to re -organize the assessment 

areas into zones that share similar environmental conditions within one area which can be distinguished 

from the conditions in other areas. 

 

The MSFD system using only two classes (good and bad) is quite limiting in terms of assessing gradual 

improvement of the status of an assessment area relative to the threshold indicating good environmental 

status. Using more classes, such as in the WFD, would give more information on changes. Regarding the 

extent to which good environmental status has been achieved in an assessment area, the satellite-based 

eutrophication product can easily determine the extent of the area that is not subject to eutrophication, 

using fixed or variable thresholds, and determine its evolution in time as an objective measure of changes 

in eutrophication status. 
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4. Evaluation of suitability of satellite data for coherent CHL assessments in the North 
Sea 

Traditional methods for eutrophication monitoring in coastal waters involve in-situ 

sampling/measurements of commonly measured parameters such as nutrients concentration, CHL 

concentration, phytoplankton abundance and composition, transparency and dissolved oxygen 

concentration. Concerning available methods for in situ measurements, ships provide flexible platforms for 

eutrophication monitoring, while remote sensing provides opportunities for a synoptic view over regions 

or sub-regions, but only for CHL concentrations. In the most part of the North Sea, obtaini ng synoptic 

observations with in-situ observations is difficult or even impossible, especially in off -shore areas. Remote 

sensing generally provides data with a higher spatial and temporal resolution compared to in -situ 

measurements. This makes satellite data useful for large-scale eutrophication assessments and for studies 

of temporal trends. Such studies enable the mapping of phytoplankton dynamics which differ in terms of 

algae bloom onsets and peaks between regions and even within the same regional asse ssment areas. In 

this section we discuss the factors which determine the quality of the satellite -observations and provide an 

overview of circumstances where remote sensing observations could be unsuitable for CHL assessments 

and where in-situ observations are required to obtain relevant information.  

One major limiting factor of ocean color remote sensing is cloud cover so high frequency satellite data can 

be more relied upon in southern Europe than in the north. Additionally, we performed different quality 

controls and merging techniques to upgrade core ocean color satellite products, as delivered by CMEMS 

and ODESA, to operational and coherent monitoring products usable for eutrophication assessment in the 

Greater North Sea giving special attention to optically complex coastal waters (section 2 and 3). Optically 

complex coastal waters pose many challenges for satellite remote sensing to accurately retrieve 

biogeochemical parameters such as CHL concentration due to varying concentrations of suspended 

particulate matter (SPM) and colored dissolved organic matter (CDOM). Still, there were situations (e.g. 

near-shore coastal waters, CDOM dominated waters) were no suitable CHL product was available which 

resulted in additional flagged pixels on top of the cloud cover. To identify regions where EO data frequency 

is low we plotted the number of available satellite observations per growing season (March -September) for 

the JMP-EUNOSAT region for two years which represent key periods: 2006 as a year with MERIS and 

MODIS data available and 2015 without with only MODIS data available after the operational failure of 

MERIS in April 2012 (Figure 4.1). The availability of MERIS data has a significant impact on data availability, 

especially in turbid coastal waters in non-MERIS periods as the GONS CHL are not available for NASA’s 

sensors due to the missing of the crucial 709nm spectral band.  
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This can be observed in regions with a critical low number of available EO observations to properly 

describe the CHL dynamics: 

 Estuaries (e.g. Thames estuary, Scheldt Estuary) 

 East Anglia Plume  

 Wadden Sea 

 near-shore coastal zones (e.g. UK, BE, NL, GE, DK) 

 Fjords (e.g. Oslo Fjord) 
 

 

 

 

 
 
 

 
 
 

 
 
 

 
Figure 4.1: Map representing of number of available satellite CHL observations per growing season (March-September) for the 

years 2006 and 2016.  Variability in data availability is caused by cloudiness, quality flagging and sensor malfunction.  

 

Figure 4.2 provides an example of data availability in a near-coast area in turbid Dutch coastal waters near 

the MWTL Noordwijk stations, located 2km and 10 km from the coast and assessment of the suitability of 

EO data for eutrophication assessment. For each of these stations we extracted the satellite CHL time 

series following the protocol described in section 2.5.2 and compared them to in-situ observations 

collected in the Dutch monitoring programme. The ‘Noordwijk 2km’ station is located in the near -coast 

band where we see a significant lower number of available satellite observations, especially in th e non-

MERIS period. While the quality-controlled EO CHL products provides reliable observations for the period 

2003-2011 but no reliable assessment is possible outside of this period due to a critical low number of 

available EO CHL observations. Future assessments can use the Sentinel-3 data which resembles the MERIS 

data. For the ‘Noordwijk 10km’ data is available for the full 1998-2017 period and satellite-based CHL 

observations can be considered suitable for eutrophication assessment.  

 

 

 

2006 2015 
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Another example of satellite suitability for eutrophication assessment is provided for the Belgian Coastal 

zone in figure 4.3 showing similar near-coast effects which are strengthened by the presence of the Scheldt 

estuary and harbor of Zeebrugge (W01 station) resulting in high SPM values ranging from 20 to 75 mg/l 

(Fettweis et al., 2010). Satellite CHL time series were extracted for the W01 station and compared to in -situ 

observations collected in the Belgian monitoring programme. We observed a critical lower number of 

available satellite observations in the non-MERIS period resulting in unreliable EO data for eutrophication 

assessment.  

Still, satellite data are often gappy due to the presence of clouds, lack of satellite coverage and 

observations rejected by quality control or a coastal mask and there has been work done to fill these gaps 

using interpolation approaches such as DINEOF. Data Interpolating Empirical Orthogonal Functions 

(DINEOF) is a self-consistent, parameter-free technique used to reconstruct this missing data based on 

temporal and spatial information. The suitability of this approach to complete missing data in problematic 

regions as presented for the Belgian Coastal zone has been investigated. More technical information about 

the DINEOF approach can be found in Alvera-Azcárate et al. (2005). An example of a reconstructed time 

series for the Belgian W01 station is demonstrated in figure 4.3. Using this technique, we were able to 

reconstruct the typical seasonal bloom dynamics as found in Belgian waters whi ch match well with the in-

situ observations. As an additional test of the usefulness of the use of DINEOF the daily match up validation 

using the Dutch in-situ data was redone using the DINEOF interpolated JMP-EUNOSAT CHL archive. Figure 

4.4 shows the scatterplots of in-situ observations versus satellite observations, with and without the 

DINEOF technique applied. Applying the DINEOF technique results in an significant increase of available 

match ups as expected (216 to 755) without strongly changing the correlation statistics showing the 

potential of this approach to improve satellite-based observations for regions where satellite data 

availability is limited.  
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Figure 4.2:  Map representing of number of available satellite CHL observations per growing season (March-September) for 

the years 2006 and 2016 in the Dutch coastal zone near stations Noordwijk 2km (NW 2km) and Noordwijk 10km (NW 10km). 

For each of these stations CHL time series are presented based on both satellite (black line) and in-situ (yellow line) 

observations.  
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Figure 4.3: (top) Map representing of number of available satellite CHL observations per growing season (March-September) 

for the years 2006 and 2016 in the Belgian coastal zone. (middle-bottom) Time series of satellite-derived CHL (black line) 

superimposed on in situ CHL observations (red dots) for station W01 for the period 1998-2017. The top time series shows the 

merged JMP-EUNOSAT CHL product with missing observations outside the period 2003-2011 (MERIS period) due to the 

station’s proximity to the coast. The bottom time series shows the reconstruction using DINEOF.   
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Figure 4.4. Scatterplots of in situ and satellite CHL observations for the Netherlands using the JMP-EUNOSAT CHL archive, 

without (left) and with DINEOF interpolation (right). The relationship between both data sets are described by the Mean 

Absolute Difference (MAD), Mean Absolute Percentage Error (MAPD).  The determination coefficient (r²) and the slope 

characterizes the regression. 

Generally, it can be stated that more quality-controlled satellite data is available in the period 2003 to 

2011, also in near-coast zones. Sentinel-3/OLCI has a similar spectral bandset as MERIS which is useful to 

provide more reliable results in turbid coastal waters. Additionally, the full resolution data (300m spatial 

resolution), compared to the 1km resolution of the products used here, will provide more robust CHL 

estimates close to the coast and in estuaries. Sentinel-3A was launched early 2016 so we expect to have 

more quality controlled CHL products available for these problematic regions from 2016 forward. Next to 

the traditional ocean color sensors, sensors like Sentinel -2/MSI which are originally designed for land 

observation can also be used to monitor near-coast marine regions providing satellite observation with a 

spatial resolution of up to 10m (Ruddick et al., 2016). 

In summary we can conclude that satellite data are suitable:  

 In optically simple waters (case 1 waters)  

 In optically complex waters (case 2 waters) after applying the quality control as 

described in section 2.4.  

 in offshore areas where taking in situ measurements is costly  

 in areas where no in situ data is available 

 for comparisons of the eutrophication status over large subregions  

 in addition to in situ measurements.  

 

 

 

 

 

 



 
 
 

72 
 

In situ measurements are more suitable:  

 in (sub)regions with an increasing eutrophication problem, and high quality data is 

required 

 in near-shore coastal areas where satellite data availability is insufficient 

 in optically complex coastal waters where no optical CHL algorithm can provide 

accurate CHL estimates (e.g. CDOM rich waters) 

 in subregions where for other reasons accurate and reliable data are needed (e.g. 

river estuaries)  
 

Remote sensing observations can be considered as alternatives or in addition to in situ measurements, 

depending on the requirements with respect to data. Still, in situ measurements will always remain 

necessary to validate and calibrate EO-based CHL products.  

 

4.1. Evaluation of suitability of CHL time series for eutrophication assessment 

The eutrophication status is not established based on singular CHL observations but is based on a statistical 

representation (mean or P90) of 6-year CHL time series which can be calculated both using the in-situ data 

and satellite data. Except for the problem areas described above, satellite observations  provide a better 

temporal and spatial coverage compared to in-situ monitoring and thus are potentially better suited to 

provide multi-temporal statistical estimates. However, the irregular availability of satellite chlorophyll -a 

observations both in space and time due to cloudiness, quality flagging, sensor malfunction, etc. has to be 

considered as it impacts the product accuracy. This impact is two-fold and dependent on (1) the availability 

of observations during the actual phytoplankton bloom and (2) a proportional distribution of observations 

in the bloom and non-bloom period. Figure 2.44 illustrates this by showing how a different timing of 50 

samples on the same CHL time series can result in significantly different CHL-P90 estimates. From this 

example it is obvious that sufficient sampling of the bloom period is crucial for generating an accurate CHL-

P90 product but can still lead to errors in case of under- or oversampling compared to the non-bloom 

period. 

 

This effect of irregular sampling on the accuracy of a 90-percentile product (CHL-P90) was studied in detail 

in simulations by Van der Zande et al. (2011). In this study an ecosystem model was used to generate 

realistic time series of chlorophyll-a concentrations with high temporal resolution in the most important 

Belgian monitoring stations. These time series were sub-sampled using the actual observation density of 

the MERIS satellite in Belgian waters. Results show that a mean relative error of 25.4% on CHL-P90 

estimate can be expected due to the effects of irregular sampling. The results of this study were used to 

improve the CHL-P90 algorithms by adding a weighing procedure taking into account irregular sampling 

issues to reduce these errors to 9.9%.    
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Fig 4.5. Illustration of the impact of two different timings of 50 samples on the same CHL time series on CHL-P90 estimates. 

Blue/green line: time series of CHL computed by ecosystem model for the year 2006 for a single Belgian monitoring station 

(51,27°N-2,91°W) with the phytoplankton bloom marked in green. P90ref (black line) and P90est (red line) are the percentile 90 

computed respectively from the daily data and from a subsample of 50 data 

When using CHL time series, both from in-situ or satellite observation, product quality is essential. While 

most studies only consider the accuracy of individual satellite CHL measurements, additional errors 

generated in multitemporal products should not be neglected. This sensitivity study allowed more insight 

into the impact of sampling irregularities on the final product which should be considered carefully as 

significant errors were found. The proposed approach provides a tool to consider sampling issues resolving 

a significant part of this problem without the need for additional data.  This theoretical study can be 

transformed into an operational approach by replacing the ecosystem model by long term satellite 

climatologies to provide a pixel-based CHL time series. These reference time series can be resampled 

according to actual in-situ and satellite sampling frequencies providing an evaluation of the quality of the 

time series. The combination multi-temporal CHL estimates (mean, P90) and an error estimate using this 

approach can be considered as a more complete product needed by policy makers for WFD and MSFD 

reporting requirements.  

Additionally, these accuracy assessments of both in-situ and satellite CHL time series can be used to 

objectively determine an optimal way to merge the two data sets together for eutrophication assessment 

as done in the HELCOM approach (i.e. HEAT tool). In this approach the multi-temporal estimates (in-situ 

and satellite) are merged together by taking a weighted mean where the weights are chosen arbitrarily or 

based on expert knowledge. These weights could be determined more objectively based on the accuracy of 

each of the CHL time series, i.e. more weight given to in-situ observations when accuracy of in situ CHL 

time series is higher than satellite CHL time series and vice versa.  
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5. Conclusions and recommendations 

For efficient monitoring of eutrophication, it is advised to combine all available monitoring platforms, i.e. 

dedicated monitoring surveys taking water samples, Ferryboxes mounted on ‘ships of opportunity’ and 

satellite observations. In this way, the strengths and weaknesses of one platform can be compensated by 

another in terms of spatial and temporal resolution, sampling depth, ability to measure different variables, 

analytical precision and costs. The use of satellite data has been identified as a promising scientific 

development by JRC in their “In-Depth Assessment of the EU Member States’ Submissions for the Marine 

Strategy Framework Directive under articles 8, 9 and 10” as the use of remote sensing techniques can 

complement the scarcity of field measurements which has increased during the last decade. Budgets 

available for marine monitoring are decreasing in many European countries and they struggle to obtain 

sufficient data for a reliable GES assessment. Efficient use of monitoring resources is therefore needed 

more than ever. Satellite data of chlorophyll combine cheaper data collection with a much improved 

geographical and temporal coverage. To enable such a combined use of different data sources, there is a 

need for a scientifically sound procedure to feed data collected with different methods into one common 

indicator for the assessment (e.g. CHL) describing both the state and the development of the pelagic 

environment. 

The use of satellite data for assessments requires an open eye for current methods, including baselines and 

thresholds, and flexibility to achieve better coherence. Satellite data from ocean color sensors (i.e. 

SeaWiFS, MODIS, MERIS, VIIRS, Sentinel-3) can provide spatially coherent data on CHL concentrations using 

a variety of CHL retrieval algorithms (e.g. blue/green-ratio algorithms, red-NIR algorithms or Neural 

Networks). However, because of the optical complexity of coastal waters, retrieving accurate CHL 

estimates is challenging. The CHL algorithms are often regional or only apply to a certain water type (e.g. 

clear waters, turbid waters, CDOM rich waters) making it difficult to apply the m to a region such as the 

North Sea as water properties vary between and within regions so that only one algorithm is generally not 

adapted to the whole study area. To fill this gap, we presented a methodology to determine the 

reflectance conditions for which these algorithms can deliver an accurate CHL estimate in complex optical 

conditions as found in coastal waters. Results show that by applying the quality control per algorithm, 

performances of the selected algorithms are improved and almost reach the standards expected in open 

ocean for direct match ups (i.e. 30% error). Next, the best combination of quality controlled CHL algorithms 

is determined to produce a quality controlled multi -algorithm satellite CHL product based on best suited 

algorithm/water type combination. Data distribution centers such as CMEMS and ODESA online played a 

key role in this endeavor as they provide analysis-ready validated ocean color products as input for the 

JMP-EUNOSAT processing chain.  

The suitability of the blended CHL product for eutrophication assessment was evaluated by a comparison 

analysis with in situ datasets for all assessment areas in the greater North Sea provided by the consortium 

members. Ocean colour algorithms are generally calibrated using HPLC in situ measurements. In this study, 

in-situ CHL estimates obtained through different techniques were used, i.e. HPLC, spectrophotometry, 

fluorimetry. As expected there was a better agreement for the HPLC measurements, but it was important 

for the consortium partners who are using spectrophotometry or fluorimetry methods to have an objective 
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assessment of how the satellite products compare to their in-situ data sets and how it could impact their 

eutrophication assessments. A daily match up analysis with the complete in-situ observations resulted in a 

median error of 45.26%. Eutrophication assessments for the MSFD are performed on multi -temporal 

composites of these daily CHL products, i.e. mean or P90 over a growing season. A validation of the yearly 

mean and P90 CHL products yielded a median error of 35.19% and 39.05% respectively showing a good 

general agreement between in-situ and satellite observations. However, stronger differences between in-

situ and satellite products were observed in cases of: 1) complex optical water type (e.g. CDOM dominated 

waters), 2) use of spectrophotometry or fluorimetry as in-situ analysis technique, 3) proximity of the 

monitoring station to the coast (e.g. < 1 to 2 km) and 4) the unavailability of the 709nm spectral band (non -

MERIS or Sentinel-3 periods) crucial for the GONS and NN CHL products which are optimized for highly 

turbid and eutrophied coastal areas.  

Considering the spatial and temporal availability of the quality-controlled multi-algorithm CHL product we 

can conclude that remote sensing provides opportunities for a synoptic overview of the CHL 

concentrations of most part of the North Sea. Gathering similar synoptic observations with in-situ 

observations is difficult or even impossible, especially in off -shore areas. This makes satellite data useful 

for large-scale eutrophication assessments and for studies of temporal trends (e.g Annex III). Such studies 

enable the mapping of phytoplankton dynamics which differ in terms of algae bloom onsets and peaks 

between regions and even within the same regional assessment areas. However, there are circumstances 

where remote sensing observations are unsuitable for CHL assessments and where in -situ observations are 

required to obtain relevant information. There is a significant advantage with the availability of the MERIS 

sensor (2003-2011) in terms of providing specialized products for optically complex waters. Outside of the 

MERIS period we observed critically low valid CHL observations in estuaries, the East Anglia Plume, the 

Wadden Sea, near-shore coastal zones (e.g. UK, BE, NL, GE, DK) and fjords.  

With the Copernicus program guaranteeing a reliable source of data to at least the year 2036, special 

efforts were made to ensure future integration of Sentinel -3/OLCI data into the processing chain. Sentinel-

3/OLCI has a similar spectral bandset as MERIS enabling more reliable products for optically complex 

waters. The full resolution data (300m spatial resolution) will provide more robust CHL estimates close to 

the coast. Additionally, in the last years considerable progress has been made in the development of water 

quality products for high resolution sensors such as Sentinel -2/MSI which was designed for terrestrial 

monitoring (Vanhellemont et al., 2016). This resulted in a portfolio of water quality products which 

dramatically improves information content of nearshore waters, e.g. 10m instead of 300m resolution 

providing information within the first nautical mile of coast relevant for WFD monitoring.  

To take the next step towards integration of satellite observations into eutrophication assessments for the 

North Sea, we investigated: 1) different approaches of aggregating the satellite CHL products, 2) use of 

different assessment levels and 3) use of new assessment areas. In a case study focussi ng on the Dutch 

part of the North Sea we tested the impact of the different approaches on eutrophication assessment in 

order to improve/fine-tune all components before actual implementation. When considering all satellite 

CHL observations at full resolution, the estimated area CHL mean is for most areas reasonably close to the 

mean based on in-situ data only when the areas are relatively homogeneous with respect to water quality 

indicators. However, in areas with strong spatial gradients, the assessment results are very sensitive to the 
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area boundaries and the choice of in-situ monitoring locations. A solution was proposed by spatially 

variable CHL assessment levels with a spatial resolution of 1x1km corresponding to the grid used for the 

satellite data. This enables a pixel by pixel eutrophication assessment by directly comparing the satellite 

data with the assessment levels resulting in a more consistent relative exceedance of the assessment levels 

throughout the assessment area. Consequently, the result is  less dependent on the definition of 

assessment areas. Such spatially varying assessment levels allows for making better use of the full spatial 

resolution that satellite data can provide. Another possibility is to re-organize the assessment areas into 

zones that share similar environmental conditions (Final report Activity 1 section 9) which is presented in a 

case study (section 3).  

During the study it was also found that the MSFD system using only two classes (good and bad) is quite 

limiting in terms of assessing gradual improvement of the status of an assessment area relative to the 

threshold indicating good environmental status. Using more classes, such as in the WFD, would give more 

information on changes. Regarding the extent to which good environmental status has been achieved in an 

assessment area, the satellite-based eutrophication product can easily determine the extent of the area 

that is not subject to eutrophication, using fixed or variable thresholds, and determine its evolution in time 

as an objective measure of changes in eutrophication status. 

We emphasize that the assessment results presented in this report are not proposed as ‘the new OSPAR 

assessment for 2022’ but function as a guideline on how to optimally integrate remote sensing data 

sources into future eutrophication assessments.  
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Annex I - Technical annex from Belgian MSFD D5 assessment for 2018: CHL by optical               
remote sensing 

Annex I.1. In situ Chl and satellite Chl 

In the Belgian Continental Shelf (BCS), the bloom of chlorophyll  a concentration (Chl) shows high values in 

the coastal area with a decreasing gradient towards the offshore. The highest values are seen every year 

during the spring bloom of Chl (usually April), when the colonial haptophyte P.globosa accumulates 

biomass after the early-spring diatom bloom. The 90th percentile of Chl (i.e. the Chl P90) estimated during 

the growing season (Mar-Oct) is the indicator that measures the size of the Chl spring bloom, and hence 

the undesirable effect of eutrophication. However, it can only be calculated when a significant amount of 

data is available (likely once per month). 

In the last three decades, however, the in-situ sampling of Chl by the Belgian national monitoring program 

has decreased from 4-7 samplings per growing season in the 1990’s (Ruddick et al. 2008) to 1-3 samplings 

on average in the 2000-2010’s at 10 sites distributed in the BCS. Though in situ data acquisition is still 

considered the most reliable monitoring tool for pigments, the statistical outputs drawn from such a 

limited amount of data is dubious and leaves no place for the analysis. This is especially the case in a very 

dynamic system like the Belgian coastal zone where Chl exhibits very strong variability on both the spatial 

and the temporal scales (Desmit et al. 2015a). 

There is a growing tendency to use optical remote sensing as a supporting tool to achieve the monitoring 

requirements because of severe resource constraints of available ship time and manpower. Satellite data 

enables the calculation of Chl P90 pixel-by-pixel, resulting in a map product which is expected to provide 

more accurate Chl P90 estimates due to an increased temporal and spatial resolution compared to the in 

situ data (Van der Zande et al. 2011). 

Annex I.2. Validation of satellite Chl 

Chlorophyll a concentration was generated from daily data from ocean colour sensors (i.e. SeaWiFS, 

MODIS, MERIS, VIIRS) for the years 1998-2017. The algorithms used to derive data from the satellite 

sensors correspond to the best available algorithms given the optical characteristics of the considered 

water (i.e. turbid and clear waters) We started from a collection of well -validated operational satellite-

based chlorophyll products for the Greater North Sea: 1) CMEMS nr. 67 product where Chl is estimated 

from the OC5ci algorithm, a combination of OCI (Hu, Lee & Franz, 2012) and OC5 (Gohin, F., et al., 2008.), 

developed at PML and 2) red-NIR ratio algorithm developed by Gons et al. (2002, 2005) for eutrophic and 

turbid waters applied to remote sensing reflectance obtained by Envisat-MERIS (MEGS 8.1 processing). For 

each of these products it was determined for which water types, described in terms remote sensing 

reflectance (Rrs) spectra, they provided the most accurate chlorophyll estimations (i.e. relative error < 

50%) based on a variety of reference datasets from the CCRR project1 (Nechad et al., 2015). These 

                                                             
1 Coast Colour Round Robin (CCRR) data set published by Nechad et al. (2015). The CCRR project (http://www.coastcolour.org) 
funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to 
test algorithms and assess their accuracy for retrieving water quality parameters. This information was developed to help end-
users of remote sensing products to select the most accurate algorithms for their coastal region.  
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reference data sets were specifically designed to test algorithms and assess their accuracy for retrieving 

water quality parameters such as Chl concentration. In the next phase of the Chl product generation, a 

blending process is applied to join chlorophyll -a datasets based on best suited algorithm/water type 

combination.  

Quality control has been applied according to the standard satellite product confidence flags for the 

MEGS8.1 processor, and a specialized flagging approach designed for the OC5ci and Gons algorithms. Data 

is supplied at approximately 1 km resolution on a geographical grid with equal spacing in longitude and 

latitude covering the described region. The daily satellite Chl  products are validated by match-up analysis 

between satellite and available in-situ (seaborne) chlorophyll a observations for the entire BCS (Figure 

A1.1, bottom) following the approach of Bailey and Werdell (2006). This analysis shows a strong correlation 

between satellite-observed and in situ chlorophyll a observations. Outliers in this match up analysis were 

identified as measurements points at the outer boundary of an algal bloom with a very strong spatial 

gradient in Chl concentrations. The allowed time difference between in situ and satellite observations was 

set to two hours which could lead to significant differences in this specific case due to tidal currents.  

A time series was produced for the validation period (2007-2016) for the coastal monitoring station W01: 

the satellite-derived chlorophyll a concentrations were superimposed on in situ chlorophyll a 

concentrations (Figure A1.1, top). This allows a qualitative assessment of the ability of the MERIS satellite 

data to capture the Chl dynamics in the Belgian waters. The use of satellite-observed chlorophyll a with a 

high temporal frequency allows deriving a more accurate Chl P90 since timing and frequency of in situ 

measurements do not ensure that samples are taken during the peak of the bloom.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1:. (Top) Time series of satellite-derived CHL (black line) superimposed on in situ CHL observations for station W01 

for the period 2007-2016. (Bottom) Regression-plot for CHL match-ups between JMP-EUNOSAT CHL products and in-situ 
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datasets for the entire Belgian Coastal Zone. Outliers in this match up analysis (orange points) were identified as 

measurements points at the outer boundary of an algal bloom with a very strong spatial gradient in Chl concentrations  

Annex I.2. Analysis of satellite Chl 

In order to show a longer-term picture of the Chl P90 in the Belgian waters, the satellite-based Chl P90 

product for the period 2011-2016 is presented in Figure A1.2. It shows the highly productive coastal areas 

and the coastal-offshore gradient in Chl P90.  

 

 

 

 

 

 

 

 

Figure A1.2: The multi-temporal Chl P90 product (March-October, 6-year period) based on satellite observations (JMP-

EUNOSAT) in the North Sea used as eutrophication indicator. 

The area of the Belgian coastal zone which shows concentrations higher than 15 µg L-1 is shown in red on 

Figure A1.3(a). The surface proportion of the Belgian waters where Chl P90 remains above 15 µg L -1 during 

the period 2011-2016 is 29% Figure A1.3(b). This area is located in the coastal zone and the territorial 

waters and is subjected to nutrient enrichment. 

 

Figure A1.3: (a) Classification of the Chl P90 product (2011-2016) for the BCS with the red class Chl P90 > 15µg L -1. (b) 

Proportion of pixels where Chl P90 is above 15 µg L -1 in the Belgian waters for the period 2011-2016. 

CHL-P90 (µg/l) 
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Figure A1.4 shows the evolution in time of the percentage surface of the Belgian Coastal Zone which falls 

into the category of ‘Chl P90 > 15µg L-1’ (i.e. red zone in Figure A1.3(a)) as an objective indicator of 

eutrophication based on 6-yearly composites. The surface of the ‘Chl P90 > 15µg L-1’ class increases 

strongly (28.74%) between composites 2001-2006 and 2007-2012 but decreases (6.45%) between 

composites 2007-2012 and 2012-2017.  

 

 

 

 

 

Figure A1.4: The percentage surface of the Belgian part of the North Sea of which the 6-yearly  Chl P90 > 15µg L -1 as an 

objective indicator of eutrophication. 

This graph shows a strong variation in the Chl dynamics and that a longer time series is needed to 

determine if this variation is part of a natural cycle.  This is made possible with the Copernicus program the 

European Commission and European Space Agency guarantee ocean colour satellite data up to 2036 with 

the launch of the Sentinel-3 satellites.  
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Annex II- Signature patterns of chlorophyll a variability in the Greater North Sea  

This section is in preparation for submission to a scientific Journal: 

Desmit, X. and Van der Zande. Signature patterns of chlorophyll a variability in the Greater North Sea. In prep.  

Along the coastal zone of the Greater North Sea (GNS, [48°N-60°N 10°E-10°W]), high blooms of chlorophyll 

a (CHL) occur between March and October and typically show a steep coastal -offshore decreasing gradient 

(Baretta-Bekker et al., 2009; Desmit et al., 2015; Jickells, 1998). Due to geomorphological features, the GNS 

comprises a wide diversity of marine systems within a relatively small geographical area: shallow coastal 

areas (5-20 m, e.g. in Belgium and The Netherlands) versus deeper waters (~300 m, in the Norwegian 

Trench), areas subject to freshwater inputs versus areas solely under oceanic influence, permanently 

mixed versus stratified systems (see van Leeuwen et al., 2015), turbid versus clear waters, and the 

productive shelf-ocean margin offshore Brittany and Ireland where fluxes of nutrient and organic matter 

occur between the shelf and the ocean, with deep water ascent bringing nutrients to the euphotic zone 

(Joint et al., 2001). These geomorphological features influence phytoplankton production and biomass 

directly or indirectly by controlling the mixed layer depth, the light and nutrient availability and the grazing 

foodweb. Depending on the local properties of the sea, CHL shows different mean concentrations, and 

different patterns of temporal variability (annual, seasonal and monthly residual). Cloern and Jassby (2010) 

have shown how different coastal systems around the world could be distinguished from each other on the 

basis of their CHL patterns of variability. Therefore, the patterns of CHL variability could theoretically be 

used to identify sensible biogeographical areas, i.e. to design “the areas within which characteristic 

ecosystems may be expected to occur”, as proposed by Longhurst (2007) at the scale of the global ocean. 

He used ocean colour data coupled with physical properties of the sea to partition the ocean into 

biogeographical provinces. Oliver and Irwin (2008) have also partitioned the global ocean by using identical 

data. They proposed a more objective, statistical technique to aggregate pixels showing similar properties. 

In this study, we use the annual, seasonal and monthly residual components of CHL variability (derived 

from satellite ocean colour) to identify biogeographical areas in the GNS, excluding the use of data 

describing the physical properties of the sea. 

Satellite observations of CHL (ENVISAT-MERIS) offer a synoptic picture of the monthly surface Chl over 

almost a decade (2003-2011). The multiplicative method of Chl signal decomposition (Cloern and Jassby, 

2010) was applied to each pixel (see Fig. A2.1) separating the CHL time series into four components: 1) the  

grand mean, 2) the interannual, 3) the seasonal and 4) the residual components. The grand mean of CHL 

and the standard deviations of the other components constitute a pool of four numbers characteristic of 

the time series of CHL in each pixel. The pixel-wise components of Chl variability may be represented in 

individual maps (annual, seasonal, residual) to depict the spatial patterns of CHL variability (not shown). 

Subsequently, these numbers may be processed with a K-means cluster analysis to aggregate pixels into 

different clusters, corresponding to areas of the GNS (Fig.  A2.2). 
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Figure A2.1 Schematic representation of the method used to produce the Figure A2.2. Monthly satellite images of CHL are 

processed to obtain a map showing eight distinct areas of CHL (see text). 

The K-means cluster analysis led to the differentiation of eight distinct clusters of pixels, which define 

specific areas in the North Sea (Fig. A2.2). These areas correspond to different signature patterns of CHL 

dynamics for the considered period 2003-2011. There is a clear difference between the continental shelf 

and the open ocean. The image suggests that bathymetry and distance from the coast are important 

explanatory factors for the different spatial patterns of Chl. However, bathymetry does not explain all the 

differences. For instance, the shallower area of Doggerbank in the Central North Sea has approximately the 

same bathymetry as the southern NS but remains in a different cluster. The stratification regimes in the 

GNS (permanent, seasonal, intermittent; van Leeuwen et al., 2015) also play a role in defining CHL patterns 

of variability, as suggested by the boundary between CHL classes in the tidally -mixed Southern North Sea 

and the stratified Central North Sea. The cluster analysis allowed identifying a specific area along the shelf 

break, where deep-water nutrients are brought to the euphotic zone enhancing phytoplankton production 

(Joint et al., 2001). Finally, there is also an area specific to the front where Arctic, Atlantic and continental 

waters meet, corresponding to the southern part of the Atlantic Subarctic Province (SARC) of Longhurst 

(2007).  

Time series in a few areas indicate the high diversity of CHL patterns that can be observed in the Greater 

North Sea. In the North Atlantic front, blooms occur in June with relatively high values and some 

interannual irregularity. Along the margin, west from Brittain, blooms are comparable but occur in April 

and show irregularity in the monthly residuals. In the North Sea, in an area with intermittent stratification, 

Chl will show very low regularity in the interannual, seasonal or monthly residual signals. There, the Chl 

bloom structure seems much less predictable due to the high variability of CHL at all time scales, 
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suggesting an effect of the intermittent stratification. At the front between the Southern North Sea and 

the Central North Sea, spring blooms are relatively more intense. They occur in April and there is strong 

variability in interannual and monthly residual signals. This may be due to the seasonal displacement of the 

front coupled with intermittent stratification and irregular nutrient enrichment from the continental rivers. 

The Norwegian Trench shows a systematic main bloom in February because of the permanent saline 

stratification there allowing CHL accumulation early in the year. Besides, there are additional small CHL 

blooms occurring with a interannual and monthly variability. The Belgian Coastal Zone shows very regular 

and predictable blooms, occurring in April with a relatively high intensity most years.  

 

 

Figure A2.2 Eight clusters of CHL in the Greater North Sea (colours indicate the different clusters). Time series of CHL (µg L -1) 

are shown with their grand mean (red line) and their seasonal signal (S-1, see Fig. A2.1) for several pixels in typical areas 

(from left to right: the North Atlantic front, the margin between the ocean and the shelf, an area of intermittent stratification, 

an area in the Southern North Sea, the Nowegian Trench, and the Belgian Coastal Zone). 

Spatial aggregates of CHL can be identified as areas in the North Sea on the basis of patterns of CHL 

variability. These areas are consistent with the known physical properties of the sea. An additional analysis 

of CHL dynamics in each area (not shown) allows distinguishing better the different areas that were 

previously selected by the K means analysis on the basis of standard deviations. The identified areas reflect 

average CHL spatial patterns in the GNS in a structural way. 
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Annex III - 20 years of satellite observation of the phytoplankton biomass from the 
northern Bay of Biscay to the eastern English Channel. Is the water quality improving? 

This section is a shortened version of an article submitted to Remote Sensing of Environment.  

Francis Gohin, Dimitry Van der Zande, Gavin Tilstone, Marieke A. Eleveld, Alain Lefebvre, Françoise 

Andrieux-Loyer, Anouk N. Blauw, Philippe Bryère, David Devreker, Philippe Garnesson, Tania Hernández 

Fariñas, Luis Lampert, Héloïse Lavigne, Florence Menet-Nedelec, Silvia Pardo, Bertrand Saulquin (2019). 20 

years of satellite observation of the phytoplankton biomass from the northern Bay of Biscay to the eastern 

English Channel. Is the water quality improving? Submitted to Remote Sensing of Environment.  

Abstract: The variability of the phytoplankton biomass derived from daily chlorophyll -a (Chl-a) satellite 

images was investigated over the period 1998-2017 in the surface waters of the English Channel and the 
northern Bay of Biscay. Merged satellite (SeaWiFS-MODISAqua-MERIS-VIIRS) Chl-a was calculated using the 
OC5 algorithm which is optimized for moderately_turbid waters. The seasonal cycle in satellite-derived Chl-

a was compared with in situ measurements made at seven coastal stations located in the southern side of 
the English Channel and in the northern Bay of Biscay. The results firstly showed that the OC5 Chl -a 
product applied to a suite of space-borne marine reflectance data, is in agreement with the coastal 

observations. For compliance with the directives of the European Union on water quality, time -series of 6-
year moving average of Chl-a were assessed over the region. A clear decline was observed in the mean and 
90th percentile of Chl-a at stations located in the mixed waters of the English Channel. The time -series at 

the stations located in the Bay of Biscay showed yearly fluctuations which correlated with river discharge, 
but no overall Chl-a trend was observed. In the English Channel, the shape of the seasonal cycle in Chl -a 
changed over time. Narrower peaks, characteristic of less eutrophic waters, were observed in spring at the 
end of the studied period. Monthly averages of satellite Chl-a, over the periods 1998-2003 and 2012-2017, 

exhibited spatial and temporal patterns in the evolution of the phytoplankton biomass similar to these 
observed at the seven coastal stations. Both the in situ and satellite Chl-a times-series showed a drop in 
Chl-a in the English Channel in May, June and July. This trend in phytoplankton biomass is correlated with 

lower river discharges at the end of the period and a constant reduction in the riverine input of 
phosphorus through improvements in the water quality of river catchments in the region. Despite a similar 
evolution in the riverine nutrient fluxes, the phytoplankton biomass and the risk of eutrophication in 
summer stay at high level in the Bay of Biscay over the studied period.  

Annex III.1. Introduction  

To assess the evolution of phytoplankton biomass over a twenty-year period (1998-2017) using both in situ 

and satellite data, the compatibility of the satellite-derived products with the conventional in situ retrievals 

has to be assessed. However, the performance assessment of ocean color satellite data is a difficult task in 

absolute, particularly for the Chl-a non-gaussian distribution with outliers. It generally relies on mean 

squared errors, such as the coefficient of determination (r2), root mean square error, and regression 

slopes. Seegers et al. (2018) discuss the limitations of these conventional methods and consider that end -

user/application criteria should be determinant in the choice of the assessment metrics. The performance 

assessment of our satellite dataset will be therefore carried out on the 90th percentile during the 

productive period (from the beginning of March to the end of October). This quantity is the key parameter 

of the Chl-a distribution involved in the monitoring procedures of the water quality already mentioned. 
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Another particularity of the quantitative investigations in the field of water quality is also to favour the use 

of the natural scale and not the logarithm transformation of Chl -a (Campbell et al., 1995) as priority is to 

provide from space accurate estimates of the elevated Chl -a concentrations encountered in case of 

eutrophication. The OC5 algorithm applied to marine reflectance in turbid waters (Gohin et al., 2002) is 

expected to perform well on a multi-sensor time series. OC5 is robust and provides relatively good 

retrievals of Chl-a compared to other algorithms, not just in north-west European coastal waters (Tilstone 

et al., 2017) but also in the western Mediterranean Sea (Lapucci et al., 2012; Gomez-Jakobsen et al., 2016), 

the coastal Vietnamese waters (Loisel et al., 2017), and at global scale (Saulquin et al., 2018).  The OC5 Chl-

a products that we propose to evaluate and use in this study are interpolated multi -sensor images 

obtained following the procedure proposed in Saulquin et al. (2011).. These interpolated daily products can 

be recommended for operational monitoring of Chl -a and for providing monthly or yearly bulletins of 

anomalies based on well-balanced datasets in term of spatial and temporal coverage.  A specific attention 

will be brought to the representativity of the annual cycle of the satellite -derived Chl-a compared to those 

observed in situ. A possible improvement in term of eutrophication should be seen not only in the 90 th 

percentile but also in the reduction of the growing period before limitation by nutrients. The annual cycles 

and the 90th percentile, assessed over years, are therefore the two properties of the Chl -a distribution 

recommanded for assessing the performance of the satellite method in view of reporting on the 

assessment of the eutrophication status. Seven stations characteristic of the coastal waters from the 

northern Bay of Biscay to the eastern English Channel have been selected for this assessment. Figure A3.1 

shows the location of the stations superimposed on the mean concentration of non -algal Suspended 

Particulate Matter (SPM) at the end of winter. All these stations are in nutrient-rich and turbid waters, 

except the Men er Roue station in the Bay of Biscay. 

 

 

 

 

 

 

Fig. A3.1. Study area showing in situ station locations superimposed on averaged non-algal Suspended Particulate Matter at 

the end of winter (March) during the period 1998-2017.  SPM is derived from satellite reflectance using the algorithm 

described in Gohin et al (2005) and Jafar-Siddik et al., (2017).  
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As the directives recommend a period of six years for the reporting of the monitoring programme, the 

average and the 90th percentile of Chl-a retrieved from space or observed in situ will be calculated also 

over this period. The rationale for this assessment period is multiple. It gives time to assess the effect of 

measures or actions taken in order to achieve or maintain good environmental status while being 

affordable in practice from in situ monitoring.  

Annex III.2. Data and methods 

The satellite dataset 
The images used in this study are interpolated OC5 Chl -a, therefore a  Level 4 product, following the 

nomenclature defined by NASA. The interpolation is performed using kriging techniques, which e nable the 

creation of a daily multi-sensor dataset of complete images over the period 1998-2017 

(ftp://ftp.ifremer.fr/ifremer/sextant-data/SATCOAST/atlantic/CHL, Ifremer, 2017). The spatial resolution of 

the interpolated images is 0.01° in latitude and 0.015° in longitude (about 1.2*1.2 km 2). In practice, the 

interpolation is carried out on Chl-a anomalies calculated by difference to a 1998-2008 average (SeaWiFS 

and MODIS/AQUA). Satellite data observed within 5 days before and 5 days after the day of interest and up 

to 160 km from the pixel location were used to build the data sets used for the interpolation.  

 

The in-situ datasets 
The in situ data of Chl-a (Fig. A3.1) were obtained from the SRN (Suivi Régional des Nutriments), the RHLN 

(Réseau Hydrologique du Littoral Normandy, SRN 2017), and the Ifremer REPHY phytoplankton network 

(REPHY, 2017). Three stations (Boulogne 1, 2, 3) are located along a transect off the harbour of Bo ulogne. 

Somme_Mer-2 is located in front of the mouth of the river Somme (mean annual discharge 35 m3s-1). The 

Boulogne and Somme_Mer stations belong to the SRN network with a monthly sampling frequency. The 

Cabourg station, belonging to the RHLN, is located in the vicinity of the Seine plume (mean annual 

discharge 510 m3s-1). The RHLN and REPHY networks have a 2-weekly sampling frequency. Two stations 

have been selected in the northern Bay of Biscay, Men er Roué in relatively clear waters and Ouest -Loscolo 

in the plume of the river Vilaine (mean annual discharge 70 m3s-1) in southern Brittany. The region under 

the influence of the Vilaine and the Loire rivers is subject to recurrent anoxia events in summer, favoured 

by high production and stratification (Chapelle et al., 1994). Areas characterised by a strong stratification 

of the water column have been shown to be sensitive to hypoxia (Conley, 2002).  

Annex III.3. Results 

The annual cycles at the stations 
Figure A3.2 shows the annual cycles of satellite and in situ Chl-a at the seven sampling stations as well as 

the mean and the 90th percentile over the productive period. Despite the fact that the satellite data are 

interpolated, the level and shape of the curves are very similar to those obtained from mono-sensor (non-

interpolated) data (Gohin, 2011). Such a result was expected, since the kriging method used for the 

interpolation is unbiased.  The major discrepancy between the satellite and in situ data sets is observed in 

winter along the cross-shore transect off Boulogne. High Chl-a concentrations are observed in situ very 

early in the year, even in January. Nevertheless, both SRN and satellite data sets illustrate that the 

phytoplankton development starts early in the Northern English Channel (as in the North-Sea), though the 

satellite Chl-a is lower. The stations in the river plumes, Somme_Mer, Cabourg and Ouest-Loscolo, exhibit 

ftp://ftp.ifremer.fr/ifremer/sextant-data/SATCOAST/atlantic/CHL
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bell curves typical of eutrophic waters enriched by a constant flux of riverine nutrients. Despite some 

differences between the datasets, the means and 90th percentileof Chl-a are very similar. The 

correspondence is high between the satellite-derived and in situ gradients along the Boulogne transect; 

with mean levels over the productive period  of about 6, 5 and 3 µg m-3 from coastal (Point 1) to deeper 

waters (Point 2 and 3). 

  

 

 

 

 

  

  

 

(a) Boulogne Point 1 (b) Boulogne Point 2 

(c) Boulogne Point 3 

  (e) Cabourg 

(g) Ouest_Loscolo 

(d) Somme_Mer 

(f) Men er Roue 

Fig.A3.2. The annual cycles of in situ and 

satellite Chl-a concentration at the selected 

stations. (a-c) the Boulogne transect; (d-e) the 

stations in the plumes of the Somme and 

Seine rivers: Somme_Mer and Cabourg. (f-g) 

stations in the Bay of Biscay. 

The numbers indicated on the graphs 

correspond to the observations made during 

the productive period (March to October). 

The mean and 90th percentile indicated are 

also calculated over the productive period. 

Bars around the in situ averages correspond 

to 1.65* the standard error 
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The temporal evolution in Chl-a at the stations 

Evolution of the yearly means with time 

Figure A3.3 gives the yearly means for the productive season (March-October) at the selected stations. The 

vertical bars around the in situ averages correspond to a approximate confidence interval on the mean at 

95% (±1.65 ns /2 ) where s2 is the standard deviation and n the number of data) for a Gaussian 

distribution, indicative of the variabil ity in the in situ data. Such a representation is not applicable to the 

satellite data as these are so numerous (204 retrievals each year within the productive period) that their 

average is a very accurate estimation of their statistical mean. Thus, the we akness of the satellite averages 

could concern more the bias that they can show with the in situ reference than their variance. That is why 

it has been so important to roughly assess this bias locally and seasonally by comparing the mean annual 

curves of satellite and in situ Chl-a and their major statistics (Figure A3.2). Despite a high variability of the 

in situ measurements, as at the Ouest_Loscolo station in 2007 with two outliers observed at 115 and 75 mg 

m-3, the time-series of the yearly means derived from the satellite or observed at sea show similar 

evolutions over years.  

The time-series of the six-year moving averages (Figure A3.4) and 90th percentiles (Figure A3.5) show a 

decrease at the stations in the English Channel whereas no significant trend is observed in the Bay of 

Biscay (stations Men er Roue and Ouest-Loscolo). Figure A3.6 presents the 90th percentiles of Chl-a at the 

beginning (1998-2003) and at the end of the period (2012-2017) over the area. These maps show that the 

Men er Roue and Ouest-Loscolo stations are very representative of the Bay of Biscay characterised by an 

absence of long term trend in the percentile 90 of Chl -a, which contrasts with the southern coast of the 

English Channel and the southern bight of the North-Sea. 
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Fig. A3.3. The yearly average of the in situ and satellite 

(continuous line) Chl-a concentration at the selected 

station during the productive season (March to 

September). (a-c) the Boulogne transect; (d-e) the stations 

in the plumes of the Somme and Seine rivers: Somme_Mer 

and Cabourg. (f-g) stations in the Bay of Biscay. 

 Bars around the in situ means correspond to 1.65* the 
standard error. 
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Fig. A3.4. The 6-year moving average of the in situ and 

satellite (continuous line) Chl-a concentration at the 

selected stations. (a-c) the Boulogne transect; (d-e) the 

stations in the plumes of the Somme and Seine rivers: 

Somme_Mer and Cabourg. (f-g) stations in the Bay of 

Biscay. 

The average is calculated over the productive season 

(March to October). 
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Fig. A3.5.The 6-year moving 90th percentile of  the in situ 

and satellite (continuous line) Chl-a concentration at the 

selected stations. (a-c) the Boulogne transect; (d-e) the 

stations in the plumes of the Somme and Seine rivers: 

Somme_Mer and Cabourg. (f-g) stations in the Bay of 

Biscay. 

The 90th percentile is calculated over the productive 

season (March to October). 
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Fig. A3.6. The 90th percentile at the beginning and at the end of the study period. (a) 1998-2003; (b) 2012-2017 
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Temporal evolution of the annual cycle 

If we restrict our samples to periods of 6 years, the lack of in situ data makes the representation of the 

annual cycle from these data less reliable. However, in parallel with lower averages, the shape of the Chl -a 

curve retrieved from satellite and in situ data clearly shows an evolution towards those of oceanic regions 

characterised by a spring peak followed by lower Chl -a concentration in nutrient-deprived waters. Figure 

A3.7 shows the evolution from a “bell shape” to a “peak shape” at the Boulogne Point 2. In 2004-2011 and 

2012-2017, the annual cycles of Chl-a show a “peak shape” and are characterised by a decrease of Chl -a at 

fortnightly intervals from 10-15 (May to July), whereas in 1998-2003 Chl-a is still high at this period. The 

decrease in Chl-a observed at the last period, 2012-2017, is accentuated in the in situ data set by the small 

number of observations available (73 for the productive period).  Figure A3.8 shows typical curves during 

years of high Chl-a (2001 and 2008) compared to years exhibiting lower Chl-a (2016 and 2017).  

To investigate the phytoplankton dynamics throughout the seasons, the satellite data provide more spatial 

and temporal coverage as illustrated in Figure A3.9 which shows the monthly means of Chl-a at the 

beginning and the end of the study period. During March and April, Chl-a is similar for both periods, while 

May and June exhibit a clear decline in Chl-a in the southern English Channel. 

 

Fig. A3.7. Evolution of the seasonal cycle at 

Boulogne Point 2 over the 1998-2017 period. (a) 

1998-2003; (b) 2004-2011; (c) 2012-2017  

The averages (satellite and in situ)) indicated on 

the graphs are calculated over the productive 

season. 



 
 
 

98 
 

  

  

  

Fig. A3.8. Typical Chl-a cycles at Boulogne Point 2. (a) 2001 and (b) 2008 high Chl-a years; (c) 2016 and (d) 2017 low Chl-a 

years. diamonds: in situ data; continuous line:  satellite data 

 

  

(a)  (b)  

(c)  (d)  
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Fig. A3.9. Monthly means of the Chl-a concentration. (a-e) 1998-2003; (f-j) 2012-2017 
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Annex III.3. Discussion 

Regional evolution of the phytoplankton biomass 

The evolution of Chl-a can be analysed at point scale using in situ data or at regional scale using satellite 

data. The deviation between in situ and satellite data shown in Figures A3.4 and A3.5 is enhanced at near-

shore coastal stations where patterns of Chl-a may exist at a range unreachable at the current 1 km 

resolution of satellite sensors. The Boulogne Point 1 and Cabourg stations are the most in shore stations 

and exhibit the highest discrepancy between satellite and in situ observations (Fig. A3.4.a and e, Fig. A3.5.a 

and e). This deviation could come from the remote-sensing technique itself, as particularly complex optical 

properties, and environment effects, due to the influence of neighbouring land pixels , could affect the 

quality of the atmospheric correction in waters near the shore. Another plausible explanation is that there 

has been a substantial improvement in the treatment of the waste waters from neighbouring cities (after 

application of measures requested by the EU directive on the bathing water quality) since the end of the 

1990’s, leading to lower nutrient input from sewage effluent into near-shore coastal waters. This may have 

had strong influence at the Cabourg station which is so close to the coast that, in order to obtain satellite 

data that are not flagged as land, the location of the pixel was shifted one kilometre northward. There are 

indeed two scales in the evolution of the nutrient fluxes that affect the coastal waters; one occurs at very 

short range due to specific improvement locally, for instance in the frame of the bathing water directive, 

and the second occurs over a larger regional level, which is related to the evolution of the inputs from 

major rivers, such as the Seine, Loire, Somme and Vilaine rivers which affect the entire area.  

 

At a regional level, there are three main areas that exhibit specific and characteristic evolutions in Chl -a 

from the remote-sensing dataset: the southern Brittany in the Bay of Biscay, the western English Channel, 

and the so-called “Fleuve côtier”, the Region Of Freshwater Influence (ROFI) from the Bay of Seine to the 

Dover strait in the eastern English Channel (Brylinski et al.; 1990, 1991).  

It is in this latter region that the evolution of Chl -a is the strongest. Along the southern Brittany coast, 

there is no significant trend in the pattern and level of Chl -a from the beginning to the end of the study 

period. At the end of the period, the risk of eutrophication remains high in summer when the surfac e 

waters stratify and temperature is high.  

The western English Channel, particularly the frontal zone between the summer stratified waters of the 

Atlantic Ocean and the mixed waters of the central English Channel, also has significantly lower levels of 

phytoplankton biomass at the end of the studied period. This area where high blooms of Karenia mikimotoi 

may occur (Vanhoutte-Brunier et al., 2008) is under the influence of the north-Atlantic hydro-climate and 

of the inputs in fresh water and nutrients from the rivers flowing into the Bay of Biscay. The evolution of 

the satellite average of Chl-a in July between the periods 1998-2003 and 2012-2017 is also exacerbated by 

the conjunction of a major heat wave in 2003 that enhanced the thermal gradients and relatively higher 

fluxes of nutrients from the rivers flowing into the Bay of Biscay.  
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How do the rivers determine the surface Chl-a in the English Channel and the northern Bay of Biscay? 

All our stations are in regions of fresh water influence where the phys ical and chemical environment is 

partially driven by the river discharges. In consequence, the yearly variability of Chl -a is related with the 

North Atlantic Oscillation, with effects on the river outflows, the inputs in nutrients, the solar irradiance 

and the sea surface temperature that impact stratification. The decrease in phosphorus is remarkable and 

it has been identified as a probable cause in the decline of the Chl -a in the Bay of Seine over the period 

1990-2010 by Romero et al. (2013). Fig. A3.10, showing the outflows and the averages in nitrate and 

phosphorus in the Seine and Vilaine rivers, processed over a 6-year basis during the productive season, 

corroborate the results of Romero et al. (2013). In their case study on the Bay of Seine, they obse rved that 

the nitrogen load remained high whilst phosphorus decreased dramatically. Gathering 17 stations from the 

RHLN Networks in the Bay of Seine over the 2000-2010 period (including the Cabourg station that is 

particularly well sampled) they also observed a significant decrease in Chl-a, a decrease that our study 

extends to the 2011-2017 period.  However, climate is known to contribute significantly to the variability of 

the  coastal environment in western Europe (Goberville et al., 2010). The major eff ect of the climate on 

Chl-a at our stations is mostly related with the precipitations and the river discharges. Higher discharges 

(Fig. A3.10.a) from the Seine river over the period 1998-2003 (particularly winters 2000 and 2001) certainly 

contribute to accentuate the negative trend in Chl-a that we observed, after Romero et al. (2013), over the 

period 1998-2017.   
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Fig. A3.10. Outflows, nitrate and phosphorus concentration during the productive season for the Seine and Vilaine rivers. (a-c) 

Seine river; d-f) Vilaine river. The moving average and the percentile 90 are indicated in continuous and dotted line 

respectively. 

By contrast to the English Channel, our Chl-a time-series in the northern Bay of Biscay (observed from 

space and in situ at Ouest Loscolo and Men er Roue) do not show any trend over the period despite a 

decline in phosphorus (Fig. A3.10.f.). Following the patterns of the phytoplankton response to the riverine 

inputs proposed in Guillaud et al. (2008), the first diatom blooms in the Bay of Biscay appear offshore in 

late winter, at the edge of the river plume, in relation with haline stratification and anticyclonic “weather 

windows.” In spring, when the central area of the northern shelf is phosphorus -limited, small cells 

(a)  Outflows  Seine river 

 

(d)  Outflows  Vilaine river 

 

(e) Nitrate concentration 

 

(b)  Nitrate concentration     

 

(c) Phosphorus concentration 

 

(f)  Phosphorus concentration 
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predominate in the phytoplankton community which competes with bacteria for both mineral and organic 

phosphorus. In summer, phytoplankton become nitrogen-limited in the river plumes; the central area of 

the shelf is dominated by small forms of phytoplankton, which are located on the thermocline and use 

predominantly regenerated nutrients.  
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